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ABSTRACT

The problem of small oscillations of an isothermal
atmosphere is investigated. The assumptions of small,
two-dimensional waves in a viscous, compressible,
stratified fluid with a constant dynamic viscosity
coefficient u 1leads to a linear system of two second-
order, ordinary differential equations in the vertical
z coordinate.

In solving the viscous problem for small wu > 0
it is found that there is an inviscid region in which the
solution behaves like a linear combination of inviscid
(u = 0) solutions. Several interesting cases develop
depending on the values of the frequency o and hori-
zontal wave number k . The most interesting case
concerns the viscous solution for those values of o and
k which lead to the development of inviscid solutions
which are wavelike in 1z . For this case the viscous
solution does not satisfy the radiation condition in the
inviscid region since viscosity reflects waves in addition
to damping wave motion for large z . Thus, the correct
solution of the inviscid problem consists of an incident
and a reflected wave. As uy - 0 the ratio of theAampli~
tudes of the incident and reflected waves approaches a

limiting value for each fixed =z 1in the inviscid region.




However, the viscous solution does not approach a limiting

value since the reflecting layer shifts to infinity

as p = 0 and thus alters the phase of the reflected wave.
The remaining cases are investigated and several

numerically computed solutions are determined. On the

basis of the computations, the validity of the lineariza-

tion is also discussed.
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1. INTRODUCTION

In the study of atmospheric waves, a model which is

frequently encountered is one of waves in an ideal com-
pressible fluid in a half-space, with a specified vertical
temperature profile (see e.g. [1]). Fdr the linearized
isothermal problem the variables are separable and a
system of two first-order, ordinary differential equations
in the vertical z-coordinate is obtained.

There is little difficulty in determining a funda-
mental set of solutions since the coefficient matrix is
constant., However, the velocity components of both solu-
tions are not uniformly bounded for all =z and, hence,
violate the assumptions underlying the linearization.

For the problem of forced oscillations two condi-
tions must be imposed to specify a unique solution. One
condition is obtained for the vertical velocity at the
ground by assuming that the fluid maintains contact with
the lower boundary 2z = 0 and another condition must be
obtained.

For certain values of the frequency o and hori-
zontal wave number k , one inviscid solution has finite
kinetic energy in an infinite column of fluid of finite
cross section, and the other solution has infinite kinetic
energy. For this case it is reasonable to select the

solution with finite kinetic energy. Thus, a unique




solution of the inviscid problem can be obtained by
imposing this additional requirement. The solution for

this case is of the form

u(x,z,t) e,Qz+i(kx—0t)

w(x,z,t) B

where k > 0, ¢ » 0 and & 1is real, u(x,z,t) is the hori-
zontal velocity component, w(x,z,t) is the vertical
velocity component, and A and B are constants. The
solution thus propagates in a horizontal x-direction.

If other values of ¢ and k are considered it is
possible to find two solutions with oblique lines of con-

stant phase:

ui(x,z,t) _ Ai ezz+i(kxi62—0t)

w, (x,z,t) B,

where &, k, B and ¢ are all positive. Both solutions
have infinite kinetic energy. Since one of the solutions
has upward energy flux and the other has downward energy
propagation, it is possible to determine a unique solu-
tion to the inviscid problem by neglecting the solution
with downward energy propagation. This assumption seems
reasonable since all the energy is being supplied by the
lower boundary. However, it must be assumed that reflec-

tion of the wave with upward energy flux 1is negligible.




This assumption (no reflection) will be called the radia-
tion condition.

Recently Yanowitch [2] considered a similar
problem: two-dimensional waves in an isothermal, incom-
pressible fluid occupying the upper half-space with a den-
sity distribution which decreased exponentially with
increasing altitude. By examining the viscous problem for
a constant dynamic viscosity coefficient u , Yanowitch
was able to introduce a reasonable requirement on the dis-
sipation of energy due to viscosity, which he called the
"dissipation condition." This condition requires the
solution of the viscous problem to dissipate only a finite
amount of energy in a column per period of oscillation of

the lower boundary. The dissipation condition, the no-

slip condition (u 0 .at z = 0), and the boundary condi-
tion on w at z = 0 - are sufficient to prescribe a
unique solution for eVéfy small p > 0 . Yanowitch then
analyzed the viscous pfoblem as y tended to zero. He
was able to show that the inviscid solution with finite
kinetic energy 1is apprdached uniformly, on an interval
-7 0 <Agz<B <;wﬂias.aﬁ +~ 0 ; if the parameters ¢ and
X kyield onefiﬁViséidiéﬁlution with finite kinetic energy
and another wi£h infinite kinetic energy. For other

values of ¢ and k which yield two inviscid solutions

with oblique lines of phace propagation and both having




infinite kinetic energy, he was able to show that the
reflection of waves is not always negligible. More pre-
cisely, he was able to show that the reflection coeffi-
cient, « (ratio of the amplitudes of the incident and

R

reflected waves), satisfied

where B = z%ﬂ», H 1is the density scale height and &
1s the vertical wavelength.l The reflection in
Yanowitch's problem was due to a relatively thin layer
which receded to infinity as u - 0 . Thus, k, did not
approach a limiting value, i.e., arg Ko varied as

w > 0 . For an incompressible isothermal model of the
atmosphere it appears that the inclusion of viscosity not
only damps the wave motion for large 2z but is also
capable of causing reflection. Since the wave motion is
damped for large =z , Yanowitch was also able to determine
reasonable estimates for the amplitude of the oscillation
of the lower boundary such that the viscous solution

remained small for all =z . Thus, viscosity also provided

a justification of the linearization,.

lSimilar results were obtained by Yanowitch [3] for
vertical oscillations of an isothermal, compressible atmos-
phere. In addition, Lindzen [4] obtained a similar result
for tidal waves in an isothermal atmosphere subject to
Newtonian cooling.




Clearly, compressibility should be included in a
model of the earth's atmosphere. Thus, a natural exten-
sion of Yanowitch's approach would be to investigate two-
dimensional, linearized wave motion in a viscous,
isothermal, compressible, stratified fluid occupying the
upper half-space =z > 0

The incompressible and compressible models differ
in several respects. The most notable difference is that
the incompressible model has only a low frequency (gravity
region) range of values for o such that the inviscid
solutions are wavelike in =z , whereas the compressible
model has both a high frequency (acoustic region) and a
low frequency (gravity region) range separated by an
excluded region. In addition, the compressible model has
inviscid solutions, for certain values of ¢ and k ,
which are eigensolutions, or free oscillations. These
solutions are the so-called Lamb waves and the 1ncompres-
sible model has no such solutions. Thus, for certain
values of o and k a resonant situation will develop
for the compressible model, and no resonant case 1S posS-
sible for the incompressible model.

Many of the results obtained by Yanowitch for the
incompressible fluid model are also obtained in this
thesis for a compressible fluid model. There is one sig-

nificant exception: the magnitude of the reflection




coefficient for the case of inviscid solutions which are
wavelike in =z depends on the horizontal wave number k
It was found that for the range of parameters considered,

the reflection coefficient Ke satisfies

_’n'B

lKR! < e ,

_ 2mH
2

is the vertical wavelength. In general, the magnitude of

where B , H is the density scale height, and &

the graVity reflection coefficient mbre nearly equals
e~ﬁB than does the acoustic reflection coefficiént. If
an error of 15 percent is tolerated then the magnitude of
the gravity reflection coefficient can be considered
approximately equal to e_TrB for all k in the range of
Computations. The acoustic reflection éoefficient has
rather peculiar properties for k values which c&rrespond
to horizontal wavelengths of 7H to 30H. For example, if a
horizontal wavelength of 13H (about 90 km) isyéonsidered,
then the refiection coefficient is no longer monotonically
decreasing as B increases. If the horizontal wavelength
is greater than 30H or less than 7H, then Sl provides
a reasonable approximation of the magnitude for both the

acoustic and gravity reflection coefficients. A summary

of the results for the case of inviscid solutions which




are wavelike in z 1is provided in figures 2 through 7 in
Section 5.2.

In Section 2 the differential equations for linear-
ized wave motion in a stratified compressible isothermal
fluid are developed. A system of two second-order, ordi-
nary differential equations in z (the altitude) are
obtained if the fluid is assumed viscous but thermally
nonconducting. The inviscid equations are also developed
in Section 2 and a fundamental set of inviscid solutions
are found.

The remainder of this paper 1is concerned with an
analysis of the viscous problem as the dynamic viscosity
coefficient tends to zero. The most difficult mathemat-
ical problem encountered is the so-called asymptotic con-
tinuation problem (Section 4). The viscous problem is
not completely analytically tractable® and thus a numer-
ical integration of the viscous ordinary differential
equation was performed. Since the asymptotic continuation
problem is inherently unstable (Section 4), a numerical

integration is not a trivial procedure. A modification of

’For the incompressible problem, which Yanowitch con-
sidered [2], the corresponding differential equation is
simple enough to make possible the determination of an
integral representation of the solution. The asymptotic
relations are then obtained from the integral representa-
tion. A similar procedure was attempted for the compres-
sible problem but it was unsuccessful.




an algorithm developed by Conte [5] is contained in Sec-
tion 4. In addition, an analysis of the error is per-
formed in Section 4 which is not included in Conte's
paper. In fact, the definition of error is rather novel.
A summary of all the computations and some concluding

remarks are in Section 5.




2. FORMULATION

The complete set of equations governing two-
dimensional flow in a viscous but thermally nonconducting

fluid3 are:

p(%% + u %%-+ w %%) + %%- = u Au + %,5% (div v) (1a)
p(g_vgug_w.g_ﬂ).g.a og

= u Aw + % g% (div v) (1b)

20 4 div (pV) = O (1c)

and S we™ - 0, (1d)

where p 1is the density, u 1s the horizontal component
of the velocity, w 1is the vertical component of the
velocity, v = [3} , and p 1is the pressure; also, vy
is the ratio of the specific heats, t 1is time, X 1s

the horizontal space coordinate, =z 1is the vertical

*For a gas, viscosity and thermal conductivity are
related [6, pp. 47-50] and, thus, it is inconsistent to
assume a viscous but thermally nonconducting fluid. The
model is very simple, but it still provides a qualitative
description of reflection.
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space coordinate, g 1s the acceleration of gravity,4

pu is the dynamic viscosity coefficient,® and A 1is the
2 2

9 7 * 2_5 . Equa-
90X 0z

tions (la) and (1b) are the Navier-Stokes equations, equa-

two-dimensional Laplacian operator

tion (1lc) is derived by assuming conservation of mass, and
equation (1d) is the adiabatic law which neglects second-
order dissipative terms.

For small deviations from equilibrium the equa-

tions (1) can be approximated by the linearized equations:

poi%+%.= woau o+ B0 @iv ), (2a)

o, W BBy - woaw v B2 div ) (2b)

%% + po(div V) + w ;;9- = 0 |, (2¢)

and %% + czpo(div V) - gogw = 0o (2d)

where the variables without subscript are the perturbed

values and the variables with the subscript zero are the

“The acceleration of gravity g 1s assumed constant
and, also, it is assumed to be the only body force acting
on the fluid.

>The dynamic viscosity coefficient u 1is assumed
small but constant.



-11-

equilibrium values of these variables. The equilibrium

values can be obtained from the following equations:

4p
a7t 8Py < o , (3a)
Py, = Rp, T, (3b)
and c? = YRT, (3c)

where R is the gas constant and the temperature TO is

assumed constant (isothermal).

If a scale height H 1is defined by

0
H = 2 4
3 (4)

dp

1 %P0 _ 1

then 5‘5 - TR (5a)
_ -z/H
or polz) = pge (5b)
2

and o = ygH (5¢)

If the Brunt-Vdisald frequency is defined by
2 dp
NT o _<f% s L __9) (6)

then




and

If the

following

u(x,z,t)

w(x,z,t)

6(z)

[N}

Qe

variables are introduced

-12-
1

\7)} = U‘%I:AU'FZ'

N2c2
g

(div V)

<
—
+

0 1 2 N
u gf-[Aw + §-§E~(dlv V)J

U(Z)ei(kx—ct)

b4

i(kx-0t)

iW(z)e ,
oo (2)/py s

z/H

d Lo
3% (div v)

(7a)

(7b)

(8a)

(8b)

(8¢)

(8d)

(8e)

(8£)

(8g)
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into the differential equation (7) then a system of

second-order differential equations is obtained:

ieo 0 ) |" 0 k<p ; 1%9) U(z)
0 p - 1 %»60 W(z) * k(p - E%E) -0 W(z)
2
2 o ) . 2 _ ko
p<k Y) teo x K ¥ (v -
+ = O s
x Y- 1 o po2 ieok2 W(z)
Y Y

(9)
where ' = é% and o = e % . The tilde has been omitted

from the variables p, z, k and o 1in equation {(9). No

confusion should arise in what follows, since only the
dimensionless variables will be considered.

Equation (9) might arise if the periodic solution
is desired when the lower boundary is forced to oscillate
with frequency o . The fluid maintains contact with the
lower boundary and, hence, must satisfy the no-slip condi-
tion, U(0) = 0 . Without loss in generality, the oscil-
lation of the lower boundary can be normalized so that
W(o) =1

The problem of forced oscillations is, of course,

artificial and the boundary conditions

U(o) = 0 (10a)
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and W) = 1 (10b)

are only a part of the complete mathematical formulation.
Only the effects of the "upper boundary'" are going to be
assessed, not the effects of the oscillating lower
boundary. For this problem it is necessary only to inves-
tigate a plane wave incident on the upper boundary; it is
not necessary to examine a realistic mechanism for the .
development of such a wave. Thus, the boundary conditions
(10) only provide a normalization of the solution of the
viscous problem and are otherwise physically meaningless.

In addition to the boundary conditions (10), other
requirements must be imposed in order to insure uniqueness
of the solution of (9). The lower boundary is capable of
performing only a finite amount of work per period of
oscillation per unit area. Thus, it seems reasonable to
require that only a finite amount of energy be dissipated
in an infinite column of fluid of finite cross section.
This condition will be referred to as the dissipation con-
dition and denoted by DC.

The local dissipation of energy depends on the
dynamic viscosity u and the squares of the space deriva-
tives of u and w . Thus the DC is equivalent to

requiring
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I {'U'(zﬂz W) |2 U |? e W) P dz < e
0

(11)
where k 1is assumed to be nonzero.

Thus, the complete mathematical formulation of the
viscous problem consists of a system of two second-order,
linear, drdinary differential equations (9), boundary con-
ditions (10) and the DC (11).

For p 1large and ¢ small it is expected that the
solution of the viscous problem can be approximately
obtained by. considering e =0 or u =0 . If u 1is set
equal to zero in (2) and relations (3) through (6) and

(8) are used then

! 2
y - 1 1 (v - 1k 2
o
W(z) Lo~ _ 42 1
k Y ? W(Z)
(12)
is obtained.
The solutions of (12) are easily determined since
the coefficient matrix is constant. The first step 1s to

solve for the eigenvalues of the coefficient matrix. This

leads to the dispersion relation

A2 oA+ = 0 (13a)
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ot
\S]

2 Yy - 1

2
o
= ~— -k
and o, Y + T (13b)

Q
[\

where A 1is an eigenvalue of the constant coefficient

matrix in (12). The roots of the dispersion relation (13)
are
1 1
)\l = 5 + ‘/Z - a (148)
Y
and )\2 = 5 T o (14b)

If o < %- in (13), then A, and A, are real and
Xz < % < Al . The solutions of the inviscid equation (12)

are of the form

- — -
Uj(z) 1 Xz
= , , | e J , j =1o0r 2 |, (15)
o“/y - k
W.(z) - 1
J k{x. - —i
for Gz/y - k2 # 0 and
B 2\ |
. —()\2 - A + g__\)
U (Z) 1 1 Y
. K(n + L1 Az
= 1 Y e (16a)
Wl(z) B 1 ]
U2(Z) 1 )\22
and = e (16b)
W, (2) 0

2
for g_ ke =0
Y
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The solutions with the subscript 2 in relations
(15) and (16) have finite kinetic energy in an infinite

column of finite cross section, since

‘ 5 21 (27 .-1)=z
“Uj(z)l + }Wj(z)‘ ’p(z) = constant x e 7 (17)
and Ay < % . The solutions corresponding to the sub-
script 1 have infinite kinetic energy since Ay %

2
For the case 27-- k? = 0 the solution with finite

kinetic energy, the so-called Lamb wave, is a free oscil-
lation. Hence, for this case a resonant situation can be

expected to develop.

If o = %- then the dispersion relation (13) yields
only one root. For this case the solutions of (12) have
the form

U. (2) !
L z/2
= 5 e (18a)
c°/y - K2
Wl(Z1J . T 1
and
Uz(z) 1 , Ul(z)
- , , | e (18D)
W (Z) (2 + Y) (O /Y -k ) W (Z)
2 @ - vz - 7) 1
2 Y

Both solutions have infinite kinetic energy in an infinite

column of fluid of finite cross section.
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The most interesting case occurs when the roots of

the dispersion relation (13) are complex.

when
2 2
o = 9 k2. .y -tk 1 (19)
Y Y 42 4
The roots of (13a) are then of the form
A, = Loag (20a)
1 2 ’
AL = E - g (20Db)
2 2 ’
1
where B = -7 (20c)
Thus B8 1is a dimensionless vertical wave number.
2.5 p
2.0
A
1.5 . =~,H

This occurs

k
{LAMB WAVE}

o
1.0 T
Y—
O’ - LI,
5
0.
.0
Figure 1. — Inviscid dispersion relation

for vy

= 1.4,
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The solutions of the inviscid differential equation (12)
are wavelike in z 1f the dimensionless parameters o
and k have values which lie in the shaded regions of
figure 1. The upper shaded region A in figure 1 is
referred to as the acoustic region and the lower shaded
region G is called the gravity region. Both solutions of
(12) for o > % are of the form (15). Both solutions
have constant kinetic energy for all =z and, hence, have
infinite kinetic energy in a column of fluid.

If the group velocities of solutions (15) for com-

plex A, are investigated, then it can be shown that

v, (2) " 2 2
as an upward energy flux for o¢“/y - k“ > 0 and
W, (2)

a downward energy flux for cz/y - k? <0 (see [7]).

U, (z)
Similarly, [Wz(z)} can be shown to have a downward
. 2

energy flux for U2/Y - k2 >0 and an upward energy flux
for oz/y k%<0 . Thus, in the acoustic region the
vertical phase propagation and the energy flux are in the
same direction for solutions (15), and for the gravity
region the vertical phase propagation and the energy flux
are in opposite directions.

It is worth noting that in some publications prior
to Yanowitch's paper [2] the upward- and downward-going

waves are handled separately, that is, linear combinations
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of the two solutions are not considered. It appears that
the tacit assumption regarding this wave motion is that
reflection does not occur.

In the following sections the differential equa-
tion (9) will be investigated subject to the boundary
conditions (10) and the DC (11). The solution of the vis-
cous problem will be investigated in the 1limit as & > 0

(or uw ~ 0) and also for a value ¢ = 1071t

, which is
comparable to the value in the earth's atmosphere. The
object is to obtain some insight into the correct formula-

tion of the inviscid problem (u = 0).
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3. REFORMULATION AND DISCUSSION OF THE VISCOUS PROBLEM

3.1 REFORMULATION
It will be convenient to introduce a new indepen-
dent dimensionless variable & , defined by

g o= & (21)

1e0

The differential equation (9) then takes the form

1 0 U(g) 0 k(g - %) u(g)
02 - 0
4 1
o & -4 v} xe-3}) W(E)
2 2
PER I TS SO §
\k Y ) a 3 Y £ U(g) .
* 2 = 0 52
L AN B G
Y Y
where 0 = g é%-= ~é%-‘ The boundary conditions (10)
become
UCE)) [0}
= (23a)
W(E) ],
_ 1
where g = = (23b)
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Thus, as ¢ =+ 0 through positive values El +~ «© along

the ray arg ¢§& = -% . Any bounded region,

0 <A<z < B< o, 1s restricted to a line segment on
the ray arg & = -% and as € » 0 the line segment
shifts to infinity. Hence, an investigation of (9) as

e >0 on 0 < A<z < B < » 1is equivalent to an investi-

gation of (22) for large &

[U(8) 7]
: ou (&)
If y(&) = ) (24a)
W(g)

ow(£)

I = : , (24b)

K = ) (24c)
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2
4k k
= 0 0 -3
R = (244d)
0 0 0 1
2
k 3k
S S R
0 0 0 0 |
o L2 0 kKo x
Y Y
and D = (24¢)
0 0 0 0
-3(y - Dk -3k 30 3
| 4 4 dv 4 |
d _ 1
then (I + £K) I y(g) = 3 (R + gD)y (&) - (25)
Equation (25) has regular singularities at & = 0 and
g = %, and an irregular singularity at £ = o , The vis-

cous problem, formulated in Section 2, can be restated in

terms of the new g£-variable. The problem is to investi-

gate solutions of equation (25) on the ray arg & = —% ,

which satisfy the boundary condition (23) and the DC (11)
as € > 0

Near & = 0 there exist solutions of equation (25)
k(e g)e", £7F, and

(&n E)E—k as & - 0 (see Appendix A). Only the

which exhibit the scalar growths §




-24 -

solutions which grow like Ek and (4n g)gk satisfy the
DC. Hence, the solution of the viscous problem is merely
a linear combination of the two solutions which satisfy
the DC.

For large & a fundamental set of asymptotic solu-

tions of equation (25) can be found (see Appendix B.1)

-2 -A
which exhibit the scalar growths & 1, £ 2,
;‘/E 1 ‘/é'_
£4e26 Y and E4e_20 Y | where A and A, are the

roots of the dispersion relation (13). Due to the dif-
ferent scalar rates of growth the asymptotic solutions are
significant in different regions. 1In particular, due to

the boundary condition (23) and the rapid growth of
AR
4626 Y

tion of equation (25), which exhibits this approximate

, as |g| increases along arg £ = —% , the solu-

g

scalar growth, is significant only near z = 0 or
6

£ =k

Thus, if e > 0 1is small, the two solutions which
satisfy the DC must combine so as to eliminate approxi-

mately the rapidly growing solution over most of the

oo =

interval 0 < |g] < l£l| and arg & = -5 . Except for a
scaling constant the viscous problem can be approximately

solved over most of the £-interval by determining a linear

®This is discussed more fully in Section 3.2.
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combination of the solutions satisfying the DC, which is

asymptotic to a linear combination of the solutions exhib-

1 g
A Ay —20’/;

iting the scalar growths §& , & , and EZe

In solving the viscous problem four distinct
regions develop. Near & = 0 the viscous forces dominate
and the solution decays like gk and (1n E)Ek and, hence,
this region is called the viscous region. For large §
the solution of the viscous problem is approximately a
linear combination of inviscid solutions and, hence, this
region is called the inviscid region. Connecting the vis-
cous region and the inviscid region i1s a transition region
where & wvaries from large to small values or equiva-

lently the kinematic viscosity varies from small to large

values. In addition, near El = T%E‘ a boundary layer
develops. The object is to investigate the viscous

problem in the inviscid region as € = 0

What is required mathematically is a means of con-
necting the viscous behavior to the inviscid behavior
through the transition region, or a method to connect the
expansions about the regular singularity § = 0 to the
asymptotic expansions about the irregular singularity
g = «» . Due to the very complicated three-term recursion
relation for the expansions about & = 0 , 1t was not

possible to attack this problem in the same manner in
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which Yanowitch solved the incompressible problem.
However, it is possible to solve the viscous problem

numerically (See Section 4).
3.2 HEURISTIC DISCUSSION OF THE VISCOUS PROBLEM

In this section a heuristic discussion of the vis-
cous problem, formulated in Section 2, is carried out.
Unless certain pathological situations develop, it is
shown that it is reasonable to expect existence and
uniqueness of the solution of the viscous problem for
every sufficiently small value of € > 0 . For the par-
ticular values of the parameters used in the calculations
it appears that none of the pathological situations devel-
oped. In addition, the four regions (viscous, transition,
inviscid, and boundary layer) are discussed.

In Appendix A it is shown that there exist pre-
cisely two linearly independent solutions of the differen-
tial equation (25) which satisfy the DC and two linearly
independent solutions which violate the DC. The two solu-
tions which satisfy the DC will be denoted by le(g) and
ng(g). No singularities exist on the ray arg & = —%
for 0 < |g| < o ; hence it is possible to analytically
continue le(g) and QQQ(E) to the whole ray,.

THEOREM 1: Let the two-dimensional vectors

H?i(g) and 352(5) consist of the first and third
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components of the four-dimensional vectors le(i) and
1

292(5), respectively. If El = 55 and Eél(gl) and
332(61) are linearly independent, then the viscous problem
has one and only one solutiomn.

NOTE: It is already known that le(g) and QQZ(E)
are linearly independent since these solutions of equa-
tion (25) are linearly independent for small values of
£ # 0 . For linear differential equations two or more
solutions are linearly independent on an interval which
excludes singularities if and only if they are linearly
independent at a single point in the interval
[8, Chapter 3].

It is not unreasonable to assume that aél(gl) and
3?2(£l) are linearly independent. See theorems B3 and B4
in Appendix B.2 for a weaker hypothesis in establishing
the existence and uniqueness of the solution of the
viscous problem.

PROOF: The viscous problem consists of a differen-
tial equation (25), boundary condition (23), and the DC
(11). Any solution of equation (25) which satisfies the
DC (11) must be a linear combination of 991(5) and QEQ(E)
(see Appendix A). The only question is whether there is

one and only one linear combination of le(g) and QQZ(E)

£

il

which satisfies the boundary condition (23) at & 1

The boundary condition (23) imposes a requirement only on
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the first and third components of le(gl) and 992(gl).
Since aél(gl) and aézcgl) are linearly independent it is
clear that there is one and only one solution of
0
c, x dc (&) + ¢, x AT, (8 = [1] Q.E.D.

It is important to note that it is reasonable to
expect the existence of a unique solution to the viscous
problem formulated in Section 1 only 1f there are pre-
cisely two linearly independent solutions of the differen-
tial equation (25) which satisfy the DC (11). If only
one solution of equation (25) satisfied the DC, there
would be little hope of also satisfying the boundary
condition (23). 1If more than two linearly independent
solutions of (25) satisfied the DC, then there would
probably be infinitely many solutions to the viscous
problem.

Theorem 1 is not very useful for obtaining addi-
tional qualitative information for & large. The region
|€] > 1 4is important since it corresponds to the physical
region 0 £ z < &n (é%» . The most important analysis
from a physical standpoint concerns the region [&]| > 1

In order to obtain additional qualitative informa-
tion for & large it is necessary to make use of the

asymptotic expansions about the irregular singularity

g = o , In Appendix B a fundamental set of formal
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asymptotic expansions 1is developed about the irregular
singularity & = « , The principal results are the fol-

lowing:

a. The lead terms in two of the asymptotic expansions
correspond to the two inviscid solutions, that is,
two of the asymptotic expansions are asymptotic to the
inviscid solutions.

b. There are two remaining asymptotic solutions which

1 g

. &
exhibit the scalar growths ghe20 VY

The solutions of equation (25) which are asymptotic
to the inviscid solutions will be denoted by ;gyl(g) and
lﬁyg(i). The solution of equation (25) which is exponen-
tially increasing in V€ as |&| increases will be denoted
by BLSOL(&). The exponentially decreasing solution will
be denoted by TLSOL(E).

If XVP(E) is the solution of the viscous problem

for some small ¢ > 0 , then (£) satisfies
Lyp

Y

Yop(E) = ¢, x DC (£) + c, x DC, (&) (26)

for some constants cy and c, - Since INVl(E), INV_ (&),

TLSOL (&), and BLSOL (&) grow at different asymptotic rates,

they are linearly independent for 0 < |&| < « and
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arg & = '% . Hence, there exist constants dl, dz’ d3,

and d4 such that

Yyp £) = Ay x INV.(E) + d, x INV_(E) + d,

x TLSOL (&) + d4 x BLSOL (&) . (27)

7 of

The boundary condition (23) restricts the norm
va(g) near z = 0 as € > 0 , provided it is assumed
that there exists a unique solution to the viscous problem
for every e > 0 sufficiently small. This additional
hypothesis is reasonable since le(a) and ng(i) are
linearly independent for all & such that 0 < |E] < «
and arg & = —% (see theorems B3 and B4 in Appendix B,
Section B.2).

If the first and third components of XVP(E) are

0(1) near z = 0 for each € > 0 sufficiently small,

then
Re)\l - -Rel;
a, = oflg,) since | |mw (¢l = ofle,| )
(28a)
Re>\2 _ —Re)\2
a, = ofle,] since 11N, (e )] = ofle, | )
(28b)

"The only exception is the resonant Lamb-wave case.
The details for this case are found in Appendix B, case 4,
and in Section 5.
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1
a, = ofee2 VY (28¢)
/i
since |lTLSOL (s ) || > ole ®e2OT Y ,
2
and d = O e—ReZO Y (zgd)
4
1
since l}BLSOL(gl)]l > oleRe20V Y ,
1
where El = TE5 and Al and Az are the roots of the

dispersion relation (see Appendix B).
As |g| is decreased (z increased) from the value
]El] = é%»(z = 0) , the term d,xBLSOL(Z) decreases very
rapidly since
1
£ 4
|ld, x BLSOL(&)|| =~ <§I> |1d, x BLSOL(£ )]
—%(Re/g—l_—Re/g) .
x e VY (29)
Since Rev/E, > RevE if Igll > |g| and
arg £ = h%-, thus, the term l|d4xBLSOL(£)|| decreases

exponentially in V[E] as |&| is decreased or equivalently

as z 1s increased. The rapid decrease of d4XBLSOL(€) is
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even more remarkable when it is related to changes in =z

If ARe/E = Re/fz - RevE , then

. !/E—— - /5[ Az/2
ARevVE = 1 — - 1L -e ™" (30a)
V2 V2¢e0
and
~2pRe/E e
e Y = EXP{- zg——(l - e—AZ/2)§ ~ e '2YE .
Ye
(30b)
Thus, for an increase in =z of about E%E- the

term d4XE£§9£(€) is multiplied by a factor of about é .
For small positive € the solution BLSOL(&) is only
important near the boundary =z = 0 , that is, the term
d4x§£§gg(£) in equation (27) decreases so rapidly that it
is insignificant and can be neglected outside a thin
boundary layer. The boundary layer thickness 1is OGﬁ?)
as € > 0 . The solution BLSOL(E) is called a boundary
layer solution.

Suppose the constants ¢ and <, in equa-
tion (26) are not known, but the vectors le(g), ng(g),
INV, (&), INV,_ (&), TLSOL(Z), and BLSOL(E) are all deter-

mined at £ = %A. For small positive values of € the

term d4xBLSOL(£) is negligible at & = %» and, thus, the

constants c, and c, in equation (26) satisfy




3%

1 1 1 1
€ " E1(1_) Tey 992(1‘) ~ dy X ——INvl(_i‘> vod, x INVz(T)
+ d. x TLSOL(+ (31)
3 1) -
For a value of € °© 1like 107! the equation (31)

is correct to hundreds of significant figures and, hence,
is certainly consistent with the accuracy of the mathe-
matical model which has been developed.

If d2 # 0 in (31), then the viscous problem can
be solved in two steps. First solve for the constants

e and e such that

e e 3 4

12 72°

1 1 . 1 1
e X DCl(I) + e2 X 992(I) + e3 X Il\vl(;) + 64 X TLSOL(I>

- £§XQ(%) ’ (32)

and then solve for the constants d and d4 such that

the vector XVP(E) is given by

Yyp(E1) = d (INV,(E,) - e INV (£ )) + d, x BLSOL(f )
(33)

that is, satisfies the boundary condition (23) at

El = I%E‘ or the boundary condition (10) at =z = 0 . The

solution, TLSOL(&), is neglected in equation (33) since it

8For the earth's atmosphere, € 1s comparable to
10-11 [6, Appendix 1].
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decays exponentially fast. For € = 107+

equation (33)
is correct to hundreds of significant figures.

Thus, for large & the vector va(g) is simply a
linear combination of the solutions zﬁyi(i) and ;yyg(g)
which are asymptotic to the solutions of the inviscid dif-
ferential equation (12). This linear combination of solu-
tions is modified in a region very close to the boundary
z = 0 . The region where the inviscid solutions accu-
rately approximate ;gyl(g) and lﬁ!Q(E) and the boundary
layer solution is negligible is the inviscid region men-
tioned in Section 3.1.

For values of & such that |&] < 1 the solutions

le(i) and QQQ(E) can be obtained from the expansions

about the regular singularity & = 0 (see Appendix A,

Section A.1). Due to viscosity the solutions decay as
does Ek ,  (&n E)Ek as &£ -~ 0 or e X% and ze %% as
z » o , The region 0 < |£| < 1 1is the viscous region

since viscous forces dominate and force the decay of the
solution of the viscous problem.

Connecting the viscous region to the inviscid
region is the transition region. In the transition region
TLSOL (%) will be significant and for this reason it will

be called the transition layer solution.
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The viscous problem is solved for small e > 0
when equations (32) and (33) are solved. The equa-
tion (33) is easily solved since the solutions ggyl(g),
Eﬁ!z(g), and BLSOL(Z) are easily computed from the asymp-
totic expansions (see Appendix B, Section B.1). Illowever,
equation (32) must be solved prior to equation (33) since
the scalar e, in equation (32) is required in equa-
tion (33). Accurate values for~lﬁyl(€), igyz(g), and
TLSOL (&) are obtained from the asymptotic expansions (sée
Section B.1) for large & . Thus, in order to solve equa-
tion (32) it is necessary to continue the accurate values
of the asymptotic expansions to small values of & , that
is, to §& = % . This problem of continuing the accurate
values of the asymptotic solutions will be called the

asymptotic continuation problem. It will be investigated

in Section 4.
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4. INVESTIGATION OF THE ASYMPTOTIC CONTINUATION PROBLEM

This section was developed as a series of modifica-
tions of a paper by Conte [5]. A numerical algorithm is
developed which is specifically aimed at solving the

asymptotic continuation problem.

4.1 NUMERICAL ALGORITHM

A concept which arises frequently in numerical
analysis is stability. Often a numerical algorithm is
considered either stable or unstable. However, certain
problems have '"inherent instability", quite independently
of the particular numerical algorithm used [9]. Due to
the different asymptotic growths of solutions of (25), the
asymptotic continuation problem is inherently unstable.
Only the solution which grows most rapidly is easily com-
puted with small relative error.

It is expected that the relative error for a
standard numerical integration scheme will grow exponen-
tially fast for the computation of any subdominant solu-
tion in the asymptotic continuation problem. However, if
a certain definition of error (Section 4.2) is introduced,
then it is found that the relative error grows only alge-
braically fast. In the remainder of this section a
numerical algorithm 1s developed. An analysis of the

algorithm follows in Section 4.2,
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In Appendix B four distinct formal asymptotic solu-
tions of (25) about the irregular singularity & = « are
developed. The formal truncated asymptotic expansions are
denoted by ij,L(g) for j =1,2,3, or 4 and
L =0,1,2,~++ . It is shown in Section B.2Z that illo(g)

and QQ O(g) are multiples of inviscid solutions. The

1 &

20 v

vector 23 L(E) exhibits the scalar growth £4e as
14

1 £

£ » o and 24 L(E) exhibits the scalar growth E4e—20 Y,

In order to solve the asymptotic continuation

problem it is necessary to determine the solutions of (25)

at & = %A,g which exhibit the distinct asymptotic
growths., Thus, it is necessary to determine vectors
Xj(g) at § = %~ such that

y_j(@ ~ ij,m(é) as § > © , arg & = ETZ— , (34)
for j =1,2,3, and 4 . Relation (34) does not uniquely

specify all of the vectors Xj(g). Since any set of four
solutions of (25) which satisfy (34) can be used in the
asymptotic continuation problem, it is natural to consider

families of solutions of (25) rather than uniquely

%The value §& = was found to be a reasonable value

at which to determine the asymptotic connection relations
for most of the computations.

o]
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defined solutions. The families are chosen so that each
member has the same asymptotic expansion on the raylo
arg & = -% . The family of solutions of the differential
equation (25) which are asymptotic to ij’w(i), is denoted
by {y,(£)3.

THEOREM 2: If Xj(g) is a member of {Xj(i)} for
j =1,2,3, and 4 , respectively, then Xj(g) is also a

member of {Xj(i)} if

Y, (8 = oy, (352)
Y, (8) = oy (8) + ey, (8) (35b)
Y, (8) =y, (8) + dy, (&) (35¢)
and
Y,(E) = oy, (8) + iy, (8) + ey, (E) + ¢y, (B) (35d)
where ¢, d, Cis Cyo and c, are arbitrary complex

scalars.

PROOF: The vectors Xl(g) and Xz(g) exponentially
dominate X4(£) as & » « ., Hence, any multiple of X4(£)
can be added to Xl(i) or Xz(g) without altering the

asymptotic properties of Xl(g) or XZ(E).

OThe families are easily extended to the sector
larg £] < m . However, this extension is unnecessary for
the immediate problem of interest.
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Similarly, Xa(g) exponentially dominates Xl(g),
XQ(E), and X4(E) as & - « , Hence, arbitrary multiples
of XI(E), Xz(i), and X4(€) can be added to X3(£) without
altering the asymptotic properties of X3(£). Q.E.D.

THEOREM 3: If Xj(g) and gj(g) are members of

{Xj(g)} for j = 1,2,3, and 4 , respectively, then

Y, () = oy, &) (36a)
Y (E) = oy, (8) * ey, (8) (36b)
Y, (8) = y,(&)* dy, (&) (36¢)
and
Y (8) = y (8) + ciy, (B) + e,y (8) + ¢y, (B) (36d)
for some scalars ¢, d, ¢, c,, and ¢,

PROOF: The vectors Xl(g), Xz(g), XB(E), and
X4(€) are linearly independent since they have different
asymptotic growths. Hence, any solution y(g) of the dif-

ferential equation (25) can be represented in the form

4
y(g) = > b.y.(&)
j=1]]
In particular, there exist constants c. such

Jjk
that
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4
L e (37)
However,
A 1 ~
||Xj(€) - Xj,L(E)ll = 0 '“‘E;I'leo(i)
€]
[y &) -y, (@I = o ———}J——iijlo(g)
HE
and

y @ - @I = |1y @) - ff_j,L(a)!l + 1Y)

- Xj,L(E)H
Thus
- 1 .
||Xj(€) - Xj(g)| | = 0 TG ero(g) ’ (38)
2
g ]

for j =1,2,3 and 4 , where L 1is an arbitrarily large
integer. The theorem is an immediate consequence of rela-

tions (37) and (38). Q.E.D.

Suppose a numerical integration of the differential
equation (25) in the direction of decreasing |&| along the
ray arg & = -g, is performed. The solution X4(£)

increases exponentially fast (in V[E]), y, (&) and y, (&)
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exhibit algebraic growth, and Xa(g) decreases exponen-
tially fast (in vYTE]) as |&| decreases. Hence, it appears
that for a numerical integration in the direction of
decreasing |&| that the transition layer solution (y, (&)
is exponentially dominant. There should be little diffi-
culty in obtaining an accurate value of the transition
layer solution at, say, & = % . However, 1t 1s antici-
pated that the remaining solutions will be more difficult
to determine accurately.

If the initial vectors for a numerical integration

of the differential equation (25) are determined from the

truncated asymptotic expansions ij L(g}, for
r

j =1,2,3, and 4 , then an initial relative error
0 ——#%IT' is introduced. The initial error can be made
2
l£]

to approach zero algebraically fast as the initial

g » o . Due to the inherent instability of the continua-
tion problem, an initially small error is expected to be
magnified. The initial error may grow exponentially fast.
Hence, it may happen that a simple numerical integration
to § = %» will yield no significant figures in the
determination of Xj(g), even though subsequent errors due
to numerical integration can be made arbitrarily small by

carrying sufficient precision in the calculations.
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In order to solve the asymptotic continuation
problem, it is necessary only to obtain an accurate member
in each of the families {Xj(i)}, for j =1,2,3, and 4
An accurate determination of a member {Xa(g)} will serve
as an error check. Thus, an attempt will be made to
determine a member of {X3(E)}, although it is not required
for the solution of equation (32).

One additional requirement must be imposed. Linear
independence of the particular members of the families
{Xj(E)} must be required. It will be shown in the next
section that it is possible to obtain accurate members of
the individual families which are essentially linearly
dependent (ill-conditioned) if only finitely many signifi-
cant figures are retained. In order to ensure linear
independence of the particular members of the different
families a canonical form will be introduced. To some
extent the canonical form is arbitrary. The two main

properties of the canonical form are that it
a. Ensures linear independence.

b. Singles out unique members in each family of

solutions.
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In addition, as a bonus the canonical form provides an
effective error control which overcomes the inherent
instability of the continuation problem in many cases.
The transition layer solution (X4(§)) is uniquely
defined and, thus, for any value of £ it is possible to
determine which component is greatest in modulus. This
component will be called the maximum component of X4(E).
If more than one component achieves the maximum, then the
component with the lowest index is called the maximum com-
ponent. Thus, for a specified value of & there will
correspond a unique maximum component of 14(5).

If Xl(i) is a member of {Xl(g)}, then consider

Y. = y, (&) rcy, (&) . (39)

Due to theorem 2, Xl(g) is also a member of {Xi(i)}. The
vector Xl(i) is said to be in canonical form at go if
Xl(go) has a zero component corresponding to the maximum
component of X4(EO). A member of {Xl(g)}, which is in

canonical form at § is denoted by Xl(g;go). Simi-

O >
larly, a canonical form for the family {Xz(g)} is intro-
duced.

The vector XQ(E;EO) is a solution of (25), such

that Xz(go;gO) is in canonical form, that is, Xz(go;go)
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has a zero component corresponding to the maximum com-
ponent of X4(EO).

THEOREM 4: For each value of Eo such that
0 < [EOI < © and arg g, = «% , the canonical vector,
Xj(g;go), defines a unique member of {Xj(E)} for
j =1o0r 2

PROOF: Existence of at least one solution,

Xj(g;go), is assured since any member of {Xj(i)}

(j = 1 or 2) can be reduced to canonical form at any Eo
on the ray arg 50 = -% .  Each member of {Xj(g)} can be
analytically continued to the entire ray, arg & = —% and

0 < |g] < «, since there are no singularities of the
differential equation (25) on this ray.

A1l that remains is to show that any two members of
{Xj(E)} (j = 1 or 2), which are simultaneously in canon-

ical form at §& must be identically equal.

O >
Suppose Xj(g;g ) and Xj(E;E ) are two members of

{Xj(i)}, which are in canonical form at £ = 50 . The

vector Xj(g;go)-gj(g;go) is equal to a multiple of 14(5)

due to theorem 3. Thus,
Y (8580 - Y (656 = cy,(8) . (40)

The constant ¢ in (40) must be zero since

Xj(go;go)—gj(go;go) has a zero component corresponding to
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It
(a2t

the maximum component of X4(£) at §

I
=
fo)
tri
o

Yy (8385) = Y (E58,)

The canonical form of a particular member of
{Xj(i)} at & = EO (j = 1 or 2) can be considered the
canonical form of the family of solutions at & = EO B
since any two members of {Xj(i)} yield the same canonical
vector at § = EO . Hence, the canonical form is a
property of the family and not merely a property of the
particular member which is reduced to canonical form.

The vectors Xl(i;ao) and Xz(g;go) are uniquely
defined members of {Xl(g)} and {XQ(E)}, respectively. For
every Eo it is possible to determine which component of
Xl(go;go) is greatest in modulus. This component will be
called the maximum component of Xl(gg;go). If more than
one component achieves the maximum, then the component

with lowest index is called the maximum component.

Consider
o838, = y,(E358,) + ¢y, (E58,) . (41)

The vector (£;£ ) is said to be in temporary
Loy 0 P

canonical formll at & = 50 if ¢ is chosen so that

Hror computational purposes the vector Xm(go5go)

will be used and then discarded. It is in this sense that
the vector y.(&45:;Ey) 1s of temporary value.
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XT(go;EO) has a zero component corresponding to the
maximum component of Xl(go;go). Since Xl(g;go) and
Xz(g;go) are unique linearly independent solutions of
(25), the vector XT(EO;EO) is uniquely defined and nonzero
for each Eo such that 0 < IE l < o and arg EO = -%
The vector XT(EO;go) has a component which is greatest in
modulus. The first component to achieve the maximum is
called the maximum component.

Now it is possible to introduce a canonical form

for {13(5)}, the boundary layer family of solutions. Sup-

pose X3(£) is a particular member of {X3(€)} and consider
Y, (E580) = vy (8) + ay, (858 + by (&€ ) + cy,(8) ,  (42)

where a, b, and ¢ are scalars which are chosen such that
X3(£O;£O) has three components which are zero. The three
zero components correspond to the distinct maximum com-
ponents of X4(€O), Xl(go;go), and XT(go;go). The scalars
a, b, and ¢ can be determined in essentially a back
substitution process by first solving for ¢ , then a ,
and finally b

THEOREM 5: For each value of EO such that

0 <

Eol < o and arg EO = —% , the canonical form (42)

defines a unique member, y (£;€,), of {y,(8)}.
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PROOF: Any member of {Xa(g)} can be reduced to

canonical form (42) for any Eo such that arg go = ~%
and 0 < IEO] < @ , The only question is whether or not

X3(g;zo) is uniquely defined.
Let X3(€;£O) and XS(Q;EO) be any two vectors which

are both members of {Xscg)} and in canonical form at

£ =¢&, . From theorem 3
Y8580 - ¥ (858) = oy, (B58) + ¢y, (858,)
o,y &, (43)
where Cis Cy and c, are uniquely determined, or
Yo (8580) - ¥y, (E580) = ay, (§58) + by, (&;€)

ey, (&), (44)

where a and b in (44) are uniquely determined from

cy and c, in (43). But 13(50;50) and X3(50;£O) have

zero components corresponding to the maximum components of
X4(EO), Xl(io;io), and XT(EO;EO). Thus, the constants

a, b, and c in (44) are all zero and this implies

4
Yo (85580) - ¥y (E58,) =0

Thus,

Y (838, - ¥y, (E5E.)

"
2
tri
]
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In order to solve the asymptotic continuation

problem it is necessary to determine members of the fami-

lies {Xj(a)} for j =1,2,3, and 4 at § = % . Due to

theorems 2 and 3 it is permissible to use the canonical
1 .

vectors Xﬁ(go;go) at EO =5 to solve equation (32).

The asymptotic continuation problem is inherently
unstable. However, theorems 2 and 3 imply that the solu-
tions of the differential equation (25), which exponen-
tially dominate Xj(g) for decreasing & , do not destroy
the calculations. For example, consider Xl(g), for
decreasing |£] the only solution which exponentially domi-
nates chg), is 24(5). If an error is initiated at some

g

0 which introduces a small multiple of X4(£), then as
|€] is decreased the growth of X4(£) may swamp the calcu-
lation. However, theorems 2 and 3 imply that arbitrary
multiples of X4(£) are acceptable, that is, do not affect
the asymptotic continuation problem. The only difficulty
which X4(€) creates in the computation of Xl(i) is that
the multiple of X4(E), introduced via an error, may grow
to such proportions that Xl(g) is masked by the multiple
of 24(5), that is, several of the significant figures of
the numerical approximation of Xl(g) may reflect the use-

less multiple of X4(E), which was introduced via an error.

In order to avoid this situation it 1s necessary to
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control (not eliminate) the multiple of X4(E) present in
the numerical approximation of Xl(g). This can be effec-
tively accomplished by reducing the numerical approxima-
tion of Xl(i) to canonical form several times over the
interval of numerical integration.

There are essentially five steps in solving the

continuation problem. They are the following:

a. Initial vectors are determined from the trun-
cated asymptotic expansions ij L(E) at an

appropriate initial value of & = & (see

I
Appendix B, Section B.2).

b. The interval from EI to & = % is divided

12 If the variable 1

into N subintervals.
is defined by t = vZ , then the N subin-
tervals are chosen to have equal length in =
The integer N 1is chosen sufficiently large so

that the transition layer solution does not

grow in norm by more than a factor of 10.

126y the case k = 0.005 , the gravity wave and
Lamb-wave numerical integrations were terminated at

g = -2 x 1041 . The DC solutions were continued from

g = % to & = -2 X 10%i  in order to determine the asymp -

totic connection relations.
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c. A numerical integrationl3 is performed over the
first subinterval starting at £ = €1 with the
initial vector Xj,L(gI) for j =1,2,3, and 4
At the end of the subinterval the numerical
solutions are reduced to the appropriate canon-
ical form. Step c is repeated for each succes-
sive subinterval. The canonical vectors
obtained at the end of the k¢h subinterval are
the initial vectors for the k+1lst subinterval.

2
1

d. A numerical integrationl4 from & = to
g = %» is performed. The numerical solutions
of (25) are once again reduced to canonical

form.

e. The boundary layer solution (y,(&)) obtained

at & = %~ is numerically integrated from

1

£ = T to & =& . The vector so obtained at

- is reduced to the boundary layer canonical

form, XB(gI;gI), by adding the proper

13The numerical step in & , which is used in the
numerical integration, is uniform in vE; that is, if H
is the uniform step in V€ and h the step in & , then
h = (V& + H)? - £ = 2/T H + H?

4The numerical step in § which is used for this
portion of the numerical integration is uniform in §&
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multiples of the vectors ij L(EI) for

Il

j 1,2, and 4 . The canonical form of the
vector £3,L(£I) is then compared with the
canonical form of the vector which has been
integrated from & = %‘ to & = EI . The
agreement, or lack of agreement, between these
two vectors is a good error indication. In
addition, the approximation of ?3(51;%> was

e

compared with ?} L(EI).

Since the numerical solutions, which approximate
Xl(g), Xz(g), and X4(g), must be accurate in order to
reduce X3(E) accurately to canonical form, it follows that
step e is an error check on all of the solutions. Since
X3(£) dominates Xl(g), XZ(E), and XA(E) for increasing
€], there should be little difficulty in numerically con-
1

tinuing X3(£) from ¢ = T to g = EI . Thus, the error

check at & = EI is a good indication of the errors
present at §& = % . For several problems where a closed-
form solution was available, the algorithm (steps a through
e) yielded accurate canonical vectors for small values of
the independent variable. In addition, step e provided a
one-significant-figure estimate of the maximum relative

error present in the canonical vectors. This partially
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justifies the claim that step e is an error check for all

the numerical solutions,.
4.2 NUMERICAL ANALYSIS

In this section the algorithm developed in Sec-
tion 4.1 is investigated. The approximate numerical value

of Xj(i), so obtained at a fixed valuel®

of & , 1is shown
to approach a vector associated with a member of {Xj(g)}.
It will be tacitly assumed that it is possible to compute
numerical solutions of the differential equation (25)
which are arbitrarily close to actual solutioné of (25).

The continuation problem, thus limitec, is simply a ques-

tion of whether the truncated asymptoiic expansions,

N

Y5 L(EI), yield sufficient accuracy tc determine the vec-
tors Xj(g) at & = %» in the limit as EI + ® .  Since the

initial error in ij,L(EI) decreases algebraically fast as

EI + « and the solutions of the diffe-ential equation (25)

grow at different exponential rates, i. is not obvious

that the continuation problem can be s.lved in this manner.
Of course, the more difficult problem of accumu-

lated error due to numerical integraticn cannot be

entirely ignored. The fifth step of tre numerical

lSFor convenience the fixed value »f & 1s chosen to
be £ = % .
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algorithm, developed in Section 4.1, provides a reason-
able check of the accumulated errors.

Consider
Yio(Eg) = v (Eg) + gy (45)

Zie

where Xje(g) is a solution of the differential equa-

tion (25) for all & . It will be assumed in all that
follows that arg & = -% .
For an arbitrary €o in equation (45) the vector

Xje(g) will not necessarily be a member of {Xj(g)} even
though Xj(g) is a member of {Xj(g)}. It is necessary for
the analysis to quantify or measure in some way the dis-
parity (error) of Xje(g) with members of {Xj(g)}. Of
course, it is possible to call Iigoll the error in Xje(g)

at & = 60 .16 However, this concept of error does not
lead to a unique valuel” since there are infinitely many

members in the families {Xj(i)}, for j = 1,2, and 3

THEOREM 6: If

E, (§;8.) = min Ny, (8) - vy.@&]|
jer 70 yi@rely @} 7° ]

£ fixed

1®The maximum norm is used throughout this paper.

Y1 j = 4 then |]§O|| uniquely defines the error
at & = &/
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where Xje(g) and go are defined in equation (45), then
the function Eje(g;go) exists, is continuous in § , and
nonnegative for 0 < |&| < « .

PROOF: If j =4 , then theorem 6 is trivial
since {X4(£)} has only one member, 24(5). Therefore, the
limit process, implicit in the definition of E4e(£;€o),
is trivial. Continuity of E4e(£;go) follows since X4e(£)
and X4(E) are continuous in §

In order to show that Eje(g;go) exists for
j=1,2, and 3 , it 1s necessary to show that there
exists a member, Xj(g) of {Xj(g)}, corresponding to each
value of & such that IIXje(E)-Xj(E)li achieves a minimum.

Let Sj(E) be a set of nonnegative numbers corres-
ponding to each value of & . A number s 1is included in

Sj(g) if and only if

5= |y 8 -y e

for some Xj(g)e{zj(i)}. Thus, sj(g) is defined for all ¢

such that 0 < |Z] < « since Xje(g) and {Xj(i)} exist for

0 < |&] < » . In addition, Sj(g) is bounded below by zero
for each value of & . Hence, Sj(E) has a greatest lower
bound (g.l1.b.) for each value of & . The function

Eje(g;go) exists if the g.1.b. is achieved for a member of

ty (€)1
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Let

sj(E) = g.l.b. Sj(i)

The function Eje(g;go) exists if sj(g)esj(g). Since sj(E)
is the g.1.b. of sj(g), there exists a sequence of func-
tions Xjn(g) such that for a prescribed § Xjn(g)e{zj(i)}

= LI lim i - =
for n = 1,2,3, and [y . ) - v B = s, (8)

n—-oo
The sequence Xjn(i) must remain bounded for fixed
& , since for arbitrary e > 0 prescribed
llXje(E) - Xjn(g)l‘ < sj(g) + ¢ for n sufficiently

large. Hence, ||Xjn(€)|l < Iy &)|] + sj(g) + ¢ . Due

to theorems 2 and 3 the vector Xjn(g) can be expressed in

the form
Yin(®) = vy + ey, (®) (46)

where Xj(g) and Xk(g) are particular members of {Xj(g)}
and {Xk(i)}, respectively; that is, Xj(g) and Xk(i) do not
vary with the subscript n

NOTE: If j =1 or 2 1in equation (46), then the

sum over k includes k = 4 only; that is,

c = c = 3 in equation (46), then

1n 2n C3n =0. If j

the sum over k includes k 1,2, and 4 . If j =4 in

equation (46), then Cip = C9p = C3, = C4py T 0
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The scalars Crn in equation (46) are uniformly

bounded in n since the vectors Xjn(a) are uniformly
bounded in n and Xl(g), Xz(g), Xs(g), and X4(£) are
linearly independent. Hence, there exists a convergent

subsequence of the scalars c¢ , call it ¢ . Thus,
kn knz

anz is a convergent sequence of vectors and this
sequence converges to a vector which is a member of
{Xj(g)}. Denote the 1limit vector by on(g), then
Y o (B - ¥ 0@ = s,(8) 5 thus, B (E;£,) exists and
is clearly nonnegative.

Clearly, IIXj(g)|| is continuous in & for a par-
ticular member of {Xj(i)} since Xj(g) is continuous.
Suppose at § = El , le(i) is selected so that
Bio(8580) = Ty (8)) -y BN and ) (B)ely, (837,
The vector le(a) exists due to the analysis which estab-

lished the existence of Eje(i;go) for 0 < |g]| < o .

For any Ez
Bio(By380) £ Hyy (8)) -y (B (47)

since le(iz) is not necessarily a vector which minimizes
||Xje(£2) - Xj(gz)ll. Consider an arbitrary sequence v_
of & wvalues such that v > El as n > « , The cor-
responding sequence of nonnegative numbers Eje(vn;go) is

bounded due to (47), and hence, there exlsts a convergent
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subsequence E. (v i & ). Inequality (47) implies
Je nk 0

IN

lim .
nk+ije(Vnk’go)

Relation (48) follows if £2 =V in (47).
k
If only equality in (48) can hold, then theorem 6

B, (£580) . (48)

1s established since the implication is that every conver-
gent subsequence E, (Vn ;€O> converges to the same limit,
je
k

Eje(gl;go). Thus, it would follow that
lim

52+51Eje(€2;€o) = By (658

oT Eje(g;go) is continuous in the variable &

Suppose
lim ) .
n +ije<Vn ’EO) < Eje(gl’go) (49)
k k
and let
e = E, (£.;£) - ¥Mrgp (v ¢
je~?1’70 n, e je nk’ 0

Now consider the sequence of vectors Yin (&) such that

I 0y
E, ; = _ -y,
o)+ Nzl o)1
and Xjn E{Xj(i)}. There exists such vectors Xjn (&) due to
k k

the analysis which establish the existence of Eje(g;go),
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If the differential equation (25) is written in the

form

dy (&)
—dg A(E)X(E) (50)

and a1l = i Al (51)
[ le]l=1
g fixed
then it is readily seen that ||A(g)|| is bounded on
0 <68 < |g] <o (recall arg & = -%). Relations (50) and
(51) imply

£
Hy@ Il < yEDIl +£ LA Ty Jas|

0

(52)
where y (&) is a solution of (50). An immediate conse-

quence of (52) 1s

g
[y iace 11as)
HyEDI < TyeEl e ?

Thus,
rse () -, EDIL < sze(vnk) -znk(vnk)ll

[ 1ae 111as]

k
X €
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However, as n >

sze<vnk) r ()17 Bty - e

:
[ a1 as]
n

and e & +~ 1 since v_ =+ & and ||A(S)]]
N 1
is bounded. Thus, for sufficiently large n,
[y . (8)) - Xnk(il)ll < By (B380) . (53)

However, (53) contradicts the definition of
Eje(g;go). Since (53) follows from relation (49), it fol-
lows that (49) is false. Hence, only equality can hold in
(48). Therefore, Eje(g;go) is continuous in & . Q.E.D.

DEFINITION 1: The function Eje(E;EO) is called the

absolute error of Xje(g) with respect to the family

{y &)},

It is often more useful to deal with relative
errors rather than absolute errors. This is generally
true when the solutions being investigated are capable of
growing or decaying exponentially fast. Before a useful
definition of relative error 1is developed, some prelimi-
nary analysis will be performed.

LEMMA 1: If fjl(g) = minl]zﬁl(g)ll , subject to

the constraints
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a. le(z)g{zj(g)}’
b. & fixed, and
c. E (58 = [y &) -y, @I,

then the function fjl(g) exists for 0 < |g] < = . If

fj2(g) = min]lzjz(g)ll subject to the constraints

o

ij(i)e{xj(g)} and
b. & fixed,

then the function sz(g) exists and is continuous in §
for 0 < |g] < = .

PROOF: Due to theorem 6, there is at least one
vector, le(z)e{zj(g)}, corresponding to each & such

that
Bi (8580 = lly® -y, @1 . (54)

If there are only finitely many such vectors, then
fjl(g) is trivially constructed. If infinitely many vec-
tors le(g) satisfy (54), then the analysis in the proof
of theorem 6 can be repeated to establish that fjl(g)
exists. Similarly, sz(i) exists. In addition, the
analysis in the proof of theorem 6 can be repeated to

establish the continuity of ij(E).
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Now return to the development of a definition of
relative error. In general, relative error is defined by

a ratio of the form

‘lXAPPROXIMATE B XEXACTI‘

exacel |

The absolute error is defined in

IIXAPPROXIMATE B X-EXACTH

definition 1. The problem is how to choose IIXEXACT‘l

from the family {y_. ,..}. The following two definitions
are possible ways of defining a unique relative error. To
distinguish these two concepts one will be called the rela-
tive accuracy and the other will be called the relative
error.

DEFINITION 2: The relative accuracy of Xje(g) with
respect to the family {Xj(g)} is denoted by Aje(i;io) and
is defined by

A (E5Eg) = 5;—(%?—9)- , (55)
i1
where Xje(g) is defined in (45), Eje(i;go) is defined in
theorem 6 and fjl(E) is defined in lemma 1.

DEFINITION 3: The relative error of Xje(g), with

respect to the family {Xj(i)}, is denoted by Rje(g;go) and

is defined by
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Eje(i;io)

R (8385) =
’e £.,08)

(56)

where Xje(g) is defined in (45), Eje(g;go) is defined in
theorem 6, and sz(g) is defined in lemma 1.

Clearly,
Aje(E;EOJ < Rje(€;€o) (57a)
since fjl(g) > sz(E) . (57b)

The relative accuracy Aje(g;go) has peculiar proper-
ties which render it unsuitable as a criterion for a
numerical analysis. It is possible for Aje(€;€0) to be
extremely small even though Xje(g) may be useless for
solving the continuation problem.

EXAMPLE: Suppose X4(go) = and

E-SNFN I SN

30 and ¢ _ = 10

Y, (Ey) = tey,(E)) . If c =10

el e S

. . - -20 . ~ 10
in (45), then Ale(go,go) ~ 10 and Rio(Eg38,) = 10

For the above example the relative accuracy 1s
small since Xie(go) equals Xl(go)+go and Xle(go) agrees

with a member of {Xl(g)} to 20 significant figures.
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The relative accuracy Ale(EO;EO) is roughly a measure of
the number of significant figures of agreement between
Xle(go) and some member of {Xi(g)} at EO . On the other
hand, the relative error Rle(g;io) is not influenced by
the apparent agreement between Xle(go) and some member of
{Xl(E)}. The relative accuracy of Xle(g) can be made
arbitrarily small at any fixed finite value of ¢ by
simply adding a sufficiently large multiple of X4(E) to
Xle(i). The absolute error Ele(g;go) is not necessarily
small if ALe(E;EO) is small. However, Rle(g;go) can only
be made small at a fixed finite value of & by making
Ele(E;EO) small. The asymptotic continuation problem will

be considered solved if the relative error Rje(g;io) can

be made t approach zero at §& = %-, for 3 =1,2,3,
and 4

Suppose Xj(g) are particular members of {Xj(g)},
respectively, for j = 1,2,3, and 4 ; then the vector

error, e, in (45), can be expressed in the form

4
e, = _Elekz_k(io) : (58)
i~

where the scalars e, are uniquely determined.
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THEOREM 7: The relative error Rje(g;go) satisfies
] 1
R Eitg) < ey \leyl I G I1 + eyl 1y, Gl

(Igol>c+|ReA2—ReAl[
“A\TET

s el HyaGll)
(59a)

M

|ReX . ~ReA |+c
r . ) &, 1 2
26 (8380) < L) ley I Ty €)1 TET™

eyl My, GBI+ Tegl Ty GGOIT)
(59b)
M le,| [y, ED|IVIET
R, (B5E) < 33 L3 0 0 (59¢)
f32(g0)

and
M
R, (£58,) < ;4—27§—()7<|el| yy GO+ eyl Ty, (501

s el 1]+ legl Ty Gll)  (s90)
for 1 < |g] < IEO| , where A, and A, are the roots

of the dispersion relation (13), the scalars €15 €55 €4,

and e, are defined in (58), the scalar ¢ 1in relations

(59a) and (59b) can be set equal to zero if Al # AZ and

if Al = A2 , then the scalar ¢ can be chosen
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arbitrarily small but positive. The constants Ml, M2, M3

and M4 are finite and independent of io . The functions
sz(g) are defined in lemma 1.

PROOF: The proof of this theorem involves a good
deal of heavy analysis. For this reason the main elements
in the proof of theorem 7 will be outlined first.

By far the most important element in establishing

theorem 7 is the definition of the absolute error

Eje(g;io). The definition of Eje(i;go) implies

B, (8580) = legl Ty, )1+ leyl 1y, 1]
el Ty, @1,

B,o(838) = eyl Ty, G+ eyl Ty, ()]
eyl My, 1,
B, (858,) < legl [lyy8)]]

and

B,o (835850 < eyl Ty, @1+ leyl Ty, @11

el @11+ Te,l 1y o)1

Theorem 7 relates the error at & to the initial

error at g/ and this is where the heavy analysis arises,

If |gol were bounded above by some finite constant, then
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the theorem would follow trivially since the solutions
Xj(g) have only a bounded growth on a bounded interval
which excludes & = 0 . However, ]ioﬂ can be chosen arbi-
trarily large in theorem 7.

For particular vectors y.(&)e{y. (&)} it is possible
XJ X‘]

to consider two cases:

The first case is easily handled for any value of
M < o , The second case can be handled by the asymptotic
expansions if M 1is sufficiently large.

LEMMA 2. If Xj(g)e{zjti)} for j = 1,2,3, and 4
and the roots, Al and Ay s of the dispersion relation

(13) are distinct, then

[y, )11

32

for j = 1,2, and 4 and 1 < |g] < » and

2
32

for 1 < Jg] < o . (60c)
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PROOF: Since Xj(E) and sz(g) are continuous for

1 < |g] < » and sz(g) >0 , it follows that

Hy. &) ]
- is uniformly bounded for j = 1,2,3, and 4 and
£, (&)

32 °°
1 < |g] <M, <® (M, held fixed). Thus, it is only nec-

0
essary to examine Ilzj(g)ll/sz(i) for & 1large. But for

g large (see Appendix B.2)

-\, '
y () ~ (b g+ ) 7, (G =1lor2) (6D

Y3(8) ~ eg 3 ¥ gy /B er)be ’ (62)
L ‘[E_
4 -
and 24(5) ~ _SO 3 + .C__l 3//—-}--.. g e 20 Y R (63)
where Eo,l’ 20,2, €o,3° and ¢, 5 are linearly indepen-

dent.
It will be convenient for the analysis to consider
the following vectors

A
v.(E) = £y (&) , for j=1or2

'%f -20‘/§ %20‘/5

V,(E) = et TVVE y o(e) + & %27 VYR y ()




-68-

"% 201¢§

and v,y = g et Ty (E)

Due to the relations (61), (62), and (63) it follows

that
\Lj(i) > 130,3. as & > @ (j = 1or 2) ,
Vi(E) > g oas B
and YA(E) > —50,3 as & » o |

Therefore, V, (£), v, (&), YBCE); and V, (&) are uniformly
bounded and linearly independent for 1 < |&] < « .

CASE 1:

[y, &0
f42 E'< )

since {X4(£)} consists of a single unique member X4(E).

CASE 2: Consider llzl(g)}l/flz(g). Lemma 1, which
established the existence of fl2(£), implies the existence

of a function c_., (&), such that
min

A

£ e ) = IV, @) e, BV, ()]

Clearly,

[y, @1 NG
T T TV, e, @V, @17

12
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It is necessary only to show that ||Yl(£)+cmin(g)y4(£)||
is uniformly bounded away from zero since |Iyl(£)|l is
uniformly bounded. The first step is to show that Cmin(g)

is uniformly bounded. Consider

|c

@ v, el - Ty, @l < 1y, @) + e @V, @]

and v, @) + ¢, @V, @I < [V,

v, &)1
Thus, ICmin(E)l < 2 TTVZTETTT ,

but |]Y1(€)l{ and |]Y4(£)]i are uniformly bounded, con-
tinuous, and for all finite & # 0 , ‘!Y4(5)|\ >0 . As
e > e, [V, » ey ;11 and hence, [|V, (E)]] is
uniformly bounded away from zero. Thus, cmin(g) is uni-

formly bounded.

There exists a constant, c¢_ , such that

b - c.C = minimum > 0 (64)
—0,1 ©—0, 3

since b0 1 and C, 5 are linearly independent vectors.
Vi Y

Now consider Ilyl(€)+cmin(£)y4(£)|] for large & ,
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[V, (E) + e, (B, ()] = [V (8) - by o + ey (E)

min
x (V,(8) * gy 3)

+ by 1 " Cuin (B, )|

(65)

Relation (65) implies

[V, (&) + c . (B)V, (8)]]

\

Z l“lo,l - Cmin(g)(—z—o,3ll

NG NY

e @ TV, ) + Eo,?»ll}'
(66)

The first term on the right side of (66) is bounded

away from zero as & - o due to (64), and the remaining

two terms tend to zero as & > « since Yi(i) >
v, () » -

Hence, relation (66) implies ||Y1(£)+cmin(£)y4(£)|] is

by 4
and |c ., (&£)] is uniformly bounded.
min

0,3 °
uniformly bounded away from zero, for sufficiently large
g and it is already known to be uniformly bounded away

from zero for 1 < |&| < M M arbitrarily large).

0

CASE 3: Consider llX2(£)||/£22(E). Replace sub-

script 1 with 2 in case 2. No new analysis is required.
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CASE 4: Consider ilzg(g)ll/f32(g). Lemma 1
implies that there exist functions, Clmin(g)’ szin(g) and
(£), such that

C .
4min

L ‘ﬂi
JE x g te720 Ylf32(€) = v &) +oey BV, (E)

. (£)V, (8)

C .
2min

' €V, (&) ]

Ctmin
Thus,

RGN
/TET £, (&)

la_%e‘zo'vcél [y, )]

[V, (Byrey , (E)V, (E)+c, . (E)V,(E)+c, . (E)V, (E)]]
(67)

It is necessary only to show that

[V, () *e,  (EV (E)+c, . (E)V,(&)+c, . (E)V, (&) ]

is uniformly bounded away from zero on 1 < |g] < = since
1 .VE
4,-20 yl

it is necessary to consider only large & since the lemma

lmin 2min

lE ||X3(5)|| is uniformly bounded. In addition,

is valid for 1 < |g] < M trivially.
The first step in establishing that

[V (E)+e o (EDV (E)+---

| is uniformly bounded away from
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zero 1s to establish that <, (E), .n(g), and C4min(g)

are uniformly bounded functions. Clearly

[TV, E) + ey IV (B + =o ] < [V )]

and

ey, (B (E) + ¢, . (E)V,(E) + ¢, . (E)V,(E)]

Imin min

VL@ < TV, ) + o) (E)V, (8) + ««+]]

Therefore,

e nin (BIV,(8) *+ ¢y (EIV,(E) + c, . (EDV, (E)]]

Imin

IA

211V, (68)

and ||V (g)|| is uniformly bounded on 1 < [g]| < = . This

I

implies that the functions c, &) @ 1,2,4) are uni-

jmin

formly bounded. If the functions ijin(g) were not uni-
formly bounded, then there would exist a sequence En >

as n - « such that

|c eIl - =, (69)

jmin

for some j = 1,2, or 4
NOTE: ijin(g) cannot become unbounded for finite

£ since yl(g), YQ(g), and Y4(£) are linearly independent
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for all finite €& . Hence, relation (68) implies that

(¢) are bounded for all finite §&

jmin
If more than one subscript j satisfies (69), then

consider the subscript j for which

lCinin Bl 2 Tey i (B (70)

for infinitely many subscripts n , where k = 1,2, and

4 . 1If more than one subscript j satisfies (70), then
choose the first subscript j which satisfies (70). Now
consider for this subscript Jj a subsequence n, such
that

chmin(€n2>l = Ckmin(gn£>| ’ (71)

for k = 1,2, and 4 . Let

Ckmin(gng)
dk(gn > = c. . 3 ’ (72)
£ jmln‘ nzi

then (71) and (72) imply \dk(gn )| <1 . 1In addition,

there exist constants Ck such that

[V, (=) + 2 : c, V. ()| = minimum > 0 , (73)
] 7
k=1,2,4
where V(=) o= e (74)
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The 1limit in (74) exists, due to the asymptotic
properties of Xj(i), for j ="1,2,3, and 4 . The vectors,
Xl(m), XZCW), Ys(w), and 14(w) are linearly independent;
thus, (73) follows.

IIYj(§n£> . ;;; dk(anz)zk(znﬁ)ll

k=1,2,4
< V) j{: ¢V (=) 11 - ll!j(zn ) - V(=)
I '
k=1,2,4
DY idk&ln;(gm)-ggwnl (75)
k#j
k=1,2,4

However, relation (73) implies that the right side
of (75) is positive for sufficiently large & ; that is,
it is bounded away from zero for sufficiently large ¢
since (l!k gng - Yk(m)‘l + 0 as mn, > = and
|d, | £ 1 . However, this implies

V. S D N =
ILﬂ(qm) k(nJ_k(th|

k#j
k=1,2,4

is uniformly bounded away from zero, or

chminGnQ)Xj (Enx) i 1; Ckmin (gnSL)Y—k(gnQI) [| M
k=1,2,4
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as ny > This contradicts (68). Hence, relation (69)
is false, that 1is cjmin(g) are uniformly bounded for
j=1,2, and 4 and 1 < |E] < = ,

If the ¢, . (&) are bounded, then consider
Jmin

1V, (&) (E)V,(8) + ¢, (B, () + c, . ()Y, ()]]

C . .
lmin 2min

= “Ys(w) eV () + eV, () e C4X4(”)I|
%lclmin(g)llyl(g) h Vl(w)‘l

+ &) v, &) - V(=]

C .
2min

ey ()] 11V, () —\14(oom§ . (76)

C4min
The term in braces on the right side of (76) tends to zero
as & - o . The first term on the right side of (76) 1is a
positive constant. Hence, lIYS(E)*Clmin(E)Y1(€)+"‘|l
is uniformly bounded away from zero. Q.E.D.

LEMMA 3. If Xj(i)e{zj(i)} for j =1,2,3, and 4

and the roots of the dispersion relation (13) are equal,

Dof =

that is, A, = A, =

1 5 , then

[y, )] o
—~%1~T§7—- = Mj < (77a)

i2

for j =1,2, and 4 and 1 < |E] < » and
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[Ty @)
W hS M‘/m (77b)

for 1 < |g| < = .

PROOF :

y (&) ~ (by g * teE

1

R N T e
1 3

y—3(g) —~ 9_0,3 + 21'3/‘/??-:4_ c o g4ez(5 Y
1 &

g48-—20' Y

v, (8) ~ 'Eo,3+21,3/‘/—+'“

The analysis for conclusion (77a) is the same as

the proof for (60a) if

1
v, () = gy,
L
_ 2 2
V,(E) = g EX,E)

and ys(g) and Y4(£) are defined in the proof of lemma 2.
The analysis in lemma 2 will then establish conclusion

(77a) for lemma 3.
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In order to establish conclusion (77b) of lemma 3,

consider
1
V_(E) = E%y.(£)
—1 =1
1
v (E) = &:2( (€) - Lon gy (z))
-2 XZ 2 1

The vectors YS(E) aﬁd YA(g) remain the same, that is,
[3(6) and Y4(£) are defined in the proof of lemma 2. No
other modifications need be made in the analysis of
lemma 2 to complete the proof of lemma 3. Q.E.D.

LEMMA 4: If Xj(g)e{xj(i)} for j =1,2,3, and 4

andy A and A, are the roots of the dispersion relation

1
(13), then
|Re) . -Re) | +c
|1y, &) [y, BT (Iiol) b2 .
T, 1T < M Ty, E 71T \TE . (78a)
|ReX  -Rel | +c
|y, ()] |1y, (G0 1] (iéol) b .
T, T = May Ty, T \TE] > (78b)
|1y, (&) ] |y, (BT

TTEZTETTT =< Ml4 TTiZTE;TTT s (78C)
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Iy, )] [y, €] ;
7, @ < Maa Ty, T (784)

A

[y, (&)1 [y, (E 1]
e = M T T (78¢)

A
=

Hy, @11 |1y, (Eg) ]
LT < M2 T, @ T (78£)

. 1y )1 1y D]
an T, T < Mse T, EITT (78e)

where -the relations (78) are satisfied uniformly for
1 < |&] < » and the constants M;, can be determined
independently of [£ [. If A, # A, , then the constant

¢ in relations (78a) and (78b) can be set equal to zero.

If Al = X2 = %~, then the constant ¢ can be chosen to

be an arbitrarily small, positive number.
PROOF: If ‘EOI were bounded above by some finite
constant, then lemma 4 would be trivial. Thus, it is

necessary to consider only |& large.

ol

For an arbitrary e > 0 prescribed, there corre-
sponds a finite constant M(&) such that for |&] > M(e) ,
[y, @)1

, —Ki
by & *1

1 - & < s (i =1 or 2); (79)

IA
+
™
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for Ay # A,

[y, &)1 ‘
1 - e < T <1 +e (Al = X2), (80)
b, 18 21
1y, ()11
1 -¢e < T < 1 +e
H@m2+§mg%ﬁﬁfn
(A, = A5 (81)
[Ty, &)1
1 -¢ 2 < + e (82)
1 g
||_(_:_O,3E,4620 ‘/;i!
Iy, &)1
and 1 -¢e¢ =< < 1+ ¢ (83)
1 (3
Il—c0,3£4ez°‘cll

Relations (79) through (83) are simply the basic
asymptotic properties of the formal truncated asymptotic
expansions. Thus, for |&]| > M(e) it is necessary to

consider only the asymptotic estimates since

A L T 1 1| TP Ay 1
g, el Tre =TI = T=e Ty (@1
Y5,

(84)
for |&] > M(e)
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Consider
|y, (&) 1] Re). -Rel
T < Mplel f ! (85)
¥, (e -1 ’
where Ml < o and Xl # kz . Relation (85) follows from

relations (79) and (84). Since the solutions of (25) are
capable of only a bounded growth on a bounded interval, it
is clear that Ml can be chosen sufficiently large so
that relation (85) is valid for 1 < || < « ., In addi-

tion, relations (79) and (84) imply

||X1(5)|| Rek2~ReK1

ML @ 2 Mal®

for 0 < M2 < o .,  Thus,
|Rek -Rel l
Iy ©1 el (1&01) 27"
Ty, &TT = TIy, T \M, Iz
Similarly, if A, = A, = -, then
[y, ()] L, ] (naol)"
T, T = 7 TTy, GHTT \T¢]
since lan g] < ﬁ|5|c
for 1 g |&] < « and arbitrarily small ¢ > 0 . Hence,

conclusion (78a) follows. Similarly, conclusion (78b)

follows.
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Now consider ||X1(5)|l/l!x4(€)1|~

| _(ren, +X >
l!il(i)ll P (R A1+4)eRe20 Vc- (86)
and
1 3
1 |ai’(R”1*Z>eRe”‘g BN CH
4

ARG

Relations (86) and (87) are a consequence of (79), (83),
and (84). The constants M3 and M4 satisfy

0 <My, <M, < for the proper choice of M3 and M,
relations (86) and (87) are satisfied for 1 < |g] < = .
Thus,

ReA +£

2
[y, (B) 1] M\ (181} 1Y R E-VED
T, @Tr =\, ) \TeT ©
|1y, €)1
[Ty, EITT

(88)

However, for arbitrary A the function

1
1
(IEJ)RGXIT ReZ=(/E-VEp)

is uniformly bounded for

1
. IEO| Rekl+z
1< gl < \goi < «» , since the factor e

TET e
is

capable of only algebraic growth as |&| is decreased from

20 =
Ref:(/g—/ )
and e VY 0

12

ol decreases exponentially fast as
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|g] is decreased from IEOI. Hence, relation (88) implies

[y, (E) 11 y, 5|
Ty, T = M T, E T

for 1 < |g| < |g,] , or conclusion (78c) is established.
Similarly, conclusion (78d) can be established. For the
1

case Xl =X, =5 the analysis of (78d) must be modified.

, Wwhere ¢ 1s an

£ 1)/ re22(/E-VE)
The function TET e Y

arbitrarily small positive constant, must be considered.
Since this function is uniformly bounded for

1 < g} < |g ] <« conclusion (78d) is established in all
cases.

In order to establish conclusion (78e) consider

[y, @/ Ty, @1

i|X3(€)li < M IglRekl+%'Re26vg
My, &TT = s €

1 3
and llzg(g)li M |€1R8K1+ZeRe2dJ;
Ty, ©T 6 ’

v

where 0 < M, < M, <« and 1 < |&] < « . Hence,
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Hy. ()] M, rrrely _</£ /T
P = () ()’

[y, (B!
Ty, GHTT 2
Red,+ zll Re——-(/€ VE)
g Y o’ . .

but £ ly b ded £
u ("'g‘({;l) 1S unirtorm Yy ounde or
1< |g] < lEOI < ® Thus,

|1y, (€)1 Hy €I

ARG Wylcsm

for 1 < |g| < |€O| < » , and conclusion (78e) is estab-

lished. Similarly, conclusion (78f) can be established.

Consider ||X3(€)ll/!|z4(€)ll-

L@ el

IEACIIN
I‘X (E)l‘ Re4OJ§
and 3 > M,e Y ’
I|y_4(€)H - 8
where 0 < Mg <M, <« and 1< lg] < « . Hence,
|1y, (&)1 M, Re‘jf’-(/a -/ Iy, I

Iy, @17 = 5 ° Iy (E)H
4 4
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40 , =
Re7?(/i—/g;)

but e <1 for 1< |g| <]g ] <« . Q.E.D.

ol

Theorem 7 is a consequence of lemmas 2, 3, and 4.
Actually, estimate (59c) can be improved but it is unim-
portant in what follows.

Now consider the error 2N in (45). Due to the
asymptotic nature of ij’L(g), Rje(io;go) + 0 for suffi-
ciently large L as [EOI > o 3 that is, if g/ 1is the
vector error associated with the initial vector 2j,L(gO)'

LEMMA 5: 1If ij,L(g) is the formal truncated expan-
sion computed by method I in Appendix B.1 and Xje(go) in

relation (45) is equal to ij L(EO), then ¢ in (45)

0
satisfies

eyl .
Ty, G 1T~ Oz

where Xj(g)a{zj(i)}; that is,

y, (&) ~ V. (&

Jeee

In addition, the € in relation (58) satisfy

eyl Tl Gl O(I lC,L;l)
M ST - P\ ’

(89a)
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eyl Ty, gl ( C-Lgl)
ij(«io)lr = 0\l ) (89b)
EARINNGRIN ( -12:.)
Ty BT A TY (89¢)
le 0 Ty, e 01 L
and ?lxj(gi)l(l) ) O(lgoi : (89d)
For j =1,2,3, and 4 . The constant ¢ 1in relations

(89a) and (89b) can be set equal to zero if the roots of

the dispersion relation are distinct and set equal to an

arbitrarily small positive constant if A=A, S % .
PROOF:
el of 1
ML ETT O G0
2
N
as EO -~ o ., Relation (90) is a consequence of the asymp-

totic nature of the formal truncated expansion ij L(go).
It will be convenient for the analysis to introduce the

following vectors:

AL
gy, (®) (G =1or 2z, a #2,) ,

v, (&)

1
1.2 -y = L
V,(8) = g £, (8) (=2 ;)
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V,(8) = g e NG
Lo e
and v,(8) = ¢ 4&“‘@4(5)
There exist constants c,, ¢,, Cg, and €, such
that
Lo

Ty (BT = Vi (Bg) + e,V (Eg) eV (8,) + v, (5y)
€Yy (Bg)

and TTz;TEETTT = CkYk(EO)

Since the vectors yj(g) are uniformly bounded for
j =1,2,3, and 4 , the lemma will be established if

bounds can be found for lcj!.

Consider the vectors yj(g) defined by

Ve = v e,

) V(&) if A # A

v,y = 1 ,
52<X2(a) - 2o Ezl(i)) if A=A, =

i V,(B) Y, (E)

\_f_Sca)=/§x(3 24 )
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. Y3(E) -V, (&)
and v, e = )
- 2

then the vectors Yj(E) are uniformly bounded since

X—l(g) ~ g_—{ho,l + -..%

Y,(8) ~ & %(90,2 + 5 an 590,1)~+ ...}

_}\'
zj(E) ~ g -]{b + ...§ if A, AX,, j=1lor2 ,

_..O,j
1 g
. Z'264; 1 ..J
Y_3(E)~E e {9_0,3 +Elr3_‘/_g+ ‘ ,
1 3
and Y, 8) ~ 546—20‘/; {"50,3 T8, 71%—' *

Thus, the vectors ﬁk(g) are uniformly bounded and

constants dk exist such that

4
k;cky_k(ao)

I
~
e

ja N

.
[<
L
—
Y
o
p—
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= = - 2 — — 1.
c, n g d2, <, dl 5 , if Xl = )2 = 55
c; = dg v v/Edy
and c, = —d4 + VE d3
The lemma will be established if it can be shown
that
d
a, | .
(el /1y, LG TD
|d, |
k
or < M
(e 17Ty, T
for 1 < IEOI < » , This can be established if the

inverse of V(E), where
i = [L©, Lo, Lo, o]

is shown to be uniformly bounded. However, ﬁ’l(g) can be
constructed from cofactors of V(g) divided by det V(g).
Since v(i) is uniformly bounded and continuous, it follows
that the cofactors and the determinant of V(Z) are con-
tinuous and uniformly bounded. In addition, the determi-
nant of V(&) is strictly nonzero since the columns of

V(E) are linearly independent. For large ¢ the columns
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of V(&) approach the vectors Eo,l’ 30,2, €130 and 0.3
and these vectors are linearly independent (see lemma Bl

in Appendix B.1). Hence,

det V(8) - det [b b

bo,17 Do,20 &1,30 0,80 > 0

as & - o , Thus, det V(&) is uniformly bounded away from
zero. Q.E.D.

THEOREM 8: The asymptotic continuation problem can
be solved.

PROOF: Lemmas 2, 3, and 5 and theorem 7 imply that

,Rekl—ReA | +c | L 1
. _ 2
Rle(g’go) = 0 !gol * 35012 e
, 2
lgol (91)
. lReAl~ReA2l+c % 1
R2e(£,io) = 0 IEOI + IEOI X N
2
1-n
R, (E58,) = Ofle,l 2 , (93)
_L
and R, (&58,) = Oflg,| S I (94)




for 1 < |g] < ]lg ] < » . However, L can be chosen

ol
arbitrarily18 large in relations (91) through (94).

Hence, Rje(g;go) can be made arbitrarily small by choosing
L  and EO sufficiently large. Q.E.D.

Thus, in principle, the continuation problem can be
solved by continuing the initial vectors ij,L(go) to
g = % for sufficiently large L and EO . Therefore, it
would appear that only a numerical integration is required
to obtain approximate values for Xj(E) at & = T -
Theoretically this is true, but in practice this proce-
dure may require more precision than is feasible.

For the theoretical investigation of the error
Eje(g;go), it was possible to neglect errors which propa-
gate in an unbounded manner as o tends to infinity.

For example, consider Ele(i;go); then, due to theorems 2
and 3, it seemed reasonable to neglect errors which ini-
tiate multiples of 24(6), the transition layer solution.
Thus, from relation (58), it is easily shown that

Bl (EsEg) < le | [y, &I+ Te,| Ty, @1+ fegl

c 1y, )] . However, |ly, ()] and ||y, (£)|] grow at

essentially the same rates as |£| is decreased and

181f the roots of the dispersion relation differ by
an integer, then the formal asymptotic solutions are not
completely developed in Appendix B.1 (see case 3 in
Appendix B.1.)
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llzs(g)ll decreases exponentially fast. Hence, if

lak] ]]Xk(éo)ll is made sufficiently small it is expected

that Ele(g;go) can be made small. The analysis which cul-

minated in theorem 8 justifies this heuristic argument.
From a numerical or practical point of view the

error |e IIX4(E)]] cannot be ignored since the solution

2
y, (&) grows exponentially fast as |€| is decreased. Thus,

the term |e | ly,(€) ]| could greatly exceed Ilzl(g)ll if

"

le | is large and |g] << IEO( . From a theoretical point
of view it is unimportant how large 154] 1124(£)]]

becomes, but from a numerical standpoint it is extremely
important. Assuming that the numerical calculations are
capable of maintaining a small relative accuracy (recall
that relative accuracy is roughly a measure of the number
of significant figures maintained in the calculations),
then it is necessary to append some process which controls
the multiple 84X4(£) present in the approximate value of
y, (). It is of the utmost importance to ensure that
le, ] llX4(£)|{ cannot greatly exceed {|X1(£)|| if only
finitely many significant figures are maintained in the
calculations. Otherwise, all of the significant figures
may merely reflect the useless vector €4X4(€).

Similarly, in order to compute approximate values

of XQLE) it is necessary to control the growth of 84X4(£),
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that 1s, 1imit the multiple of the transition layer solu-
tion present in the approximate solution Xze(g). In order
to compute approximate values of X3[€) it is necessary to
limit the multiples of Xl(E), XZ(E), and X4(£) present in
X3e(€). This is difficult, since each of these solutions
dominates y, (&) for |&| decreasing and intermediate
rounding and truncation errors initiate multiples of
Xl(g), XQ(E), and X4(£). The canonical form which was
introduced in Section 4.1 (see theorems 4 and 5) provides

the necessary error control.

If

< -N
e (8) - v @11 = 107 ]y, ©)]] (96)

where y. (&) is defined in (45), then
Yie

. -N
A (8580 < 10 . (97)

Relation (97) would require at least N significant
figures to be carried in the calculations. Even if (97)
can be maintained, no useful bound can be placed on
Rje(i;go) since

_ oy s @1l 08
Rje(g’go) < 10 ESN (O (98)

J
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where sz(E) is defined in lemma 1. Only for the case
j = 4 , the transition layer solution, can (97) be used

to establish that

=N

R, (E5E) =< 10 (99)

since {X4(E)} consists of a single unique member X4(E).
For j = 1,2, or 3 in relation (98), no useful bound
results since the families {Xj(g)} contain arbitrarily
large multiples of y, (£). Hence, llzj(g)||/fj2(i) is in
general unbounded, that is, not uniformly bounded for the
family. Since it is desired to make Rje(g;go) small for
the numerical calculations, it is necessary to append some
condition which ensures that |Izj(£)|l/£j2(£) is bounded
uniformly on 1 < |&] < o |

THEOREM 9: If the roots of the dispersion relation

are distinct, then
[y, 8501
£,(8)

for j = 1,2, and 3 and 1 < |&| < » where Xj(g;g) are

< M (100)

the canonical vectors (see theorems 4 and 5) and the func-
tions sz(g) are defined in lemma 1.
PROOF: Let Y(&) be a fundamental solution of the

differential equation (25) of the form

Y(E) = [y,;(&), y,(&), y,(&), y,(&)]
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where Xj(g)s{zj(i)}. If Kj(E)E{XjCE)} and

vie) = [v,(8), v,(&), vy(&), v, ()]

then v, (&) =y, (&)

y, (&) - v, &)y = ¢y, (&)

y,(&) - v, (&) = c,y, (&)
and  y (8) - v (&) = ay, (&) + by,(&) + cy, (&)
Thus, det Y(§) = det V(g)
if Y_(8) is defined by

Y _(8) = [y;(&38), y,(858), y5(&8;8), y, ()]
and
Y o (8 = a8 Yonin(B)s Yanin (8o x4miéﬁ)]

where Xj(g;g) is the canonical form of Xj(g) for

j =1 or 3 and XT(E;E) is the temporary canonical form
defined in relation (41). The vector XT(E;E) differs from
chg) only in that multiples of XA(E) and Xl(g) are added

to Xz(g) to generate XTCE;Q). The vectors y. (&)

jmin

satisfy

gmin BT = £5,08)

dmin



-9§5-

and for each fixed & ,

Y.

jmin

) = Xj(i)

for some Xj(g)e{zﬁ(g)}. However, y () is not included

jmin

in {XjCE)} since

() # xj(i)

ijin

for one particular member Xj(i)é{zj(g)}. Only for

j = 4 does
Vamin (B) = ¥, (E)
Lemma 1 assures the existence of ijin(g). In addition,
d -t Yc(g) = det Ymin(g) = det Y(&)
RECALL: || || is the maximum norm.
ldet Y . (€)= atlly; . G Hyyn G g, 811
X 1y g0, B
ldet Y_(8)] = [|ly, &)l [y el Ty, Ee

x [ly, &)1
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since det YC(E) is the product of only the maximum com-

ponents of Xi(g;g), XT(E;E), XG(E;E), and X4(£). Thus,

Ty Gl [y Eall 1y, o]l
T min CIIT 7 T i BT 7 T 50, GBI T

|1y, &) 1] .
T, < 4 ol

The first, third, and fourth factors in rela-
tion (101) are all greater than or equal to one. Thus,
relation (101) will provide a bound for each of these
terms if ||y (8;8)|1/11y,,;,(8)|[is bounded away from zero
uniformly for 1 < |g] < = .
Consider the function fT(E) defined by
min

£.08) = cl<§YeZnZliz(g)"XQ(g)+cl(g)zi(g)+C4(g)z4(£)l!

It can be shown (analysis similar to theorem 6)

that fT(E) exists and is continuous in & for

1 < lg] <« . In addition,
)\l
£y (&) > by
>\2
£ Ty, (&) -~ 20,2 ,
L .JE
and £ 4520 YX4(E) T TSy 3
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as & » = (see Appendix B.2) and Eo,l’ 90,2, and 0,3
are linearly independent. By analysis similar to lemma 2

it follows that

Hy, @1 < Me ()

but Iy, @11 2 Iy, ©]]

Hence, ||X2min(€)]! < ME L (E)
Iy, (858) -

. |y, N . %‘ (102)
Y yms o B

Thus, from relations (101) and (102)

[y, (g58) 1]
< 41 x M
1Y in B
for j =1 or 3 and
€58
|1y p (858D 1] L
1Y i B

Clearly, the subscripts j =1 and j = 2 <can be inter-
changed when the roots, Ay and Ay s of the dispersion
relation are distinct. This amounts merely to a renum-

bering of the inviscid solutions. Therefore, if
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|1y, Ese) ] ]
[T 1min BT

is uniformly bounded for arbitrary A as

1
[y, Eall S
aj l l 15 unirormiy

long as A A then
& 1 # 27’ HX2min

bounded for arbitrary A, £ A, - Q.E.D.

It kl = XZ =

IlXT(g;g)“ M
i2n €] + 1

, then

0] b

(103)
Yo (B

for 1

IA

|g] < = . Thus,

y.(&;8)
Iy, LI W dmel v, (104a)

1Y ymin B

1 or 3 and

for j

[y, (E58) |

< c(|am gl + 1) . (104b)
Y ppin B

Since |%n &| grows very slowly there is very little addi-

tional difficulty for the case Ay = A, = %

Thus, in all cases the canonical form limits the

ratio Ilzj(E;E)ll/llx (8)|]. 1In so doing, if y, (£;E)

irin
has a small relative accuracy, then it also has a small
relative error.

The solutions of the differential equation (25)

grow by only a bounded factor on any bounded interval;

that is, if y(g) is a solution of (25) then
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MIE. -
[y < Ty lle 1176, (105)

where M < « can be determined for 1 < || < » . There-
fore, it is not necessary to continuously reduce Xje(g) to
canonical form in order to control the error growth. It
is only necessary to reduce Xje(g) to canonical form
several times over the interval of numerical integration.
The length of the interval over which a numerical integra-
tion can safely be performed without reduction to canon-
ical form obviously depends on the parameters o, k, and y
and the precision which 1s maintained’in the calculations.
To some extent experience is required, but a good first
estimate of the length of an interval can be obtained by
considering the different asymptotic rétes of growth (see
Section 4.1, step b in the numerical algorithm).

The accuracy of the calculations, which were per-

formed for the viscous problem formulated in Section 2, is

discussed in Section 5 and Appendix B.Z.
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5. COMPUTATIONS AND CONCLUSIONS

5.1 PRELIMINARY REMARKS AND ORGANIZATION OF THE
COMPUTATIONS

The viscous problem is solved for small € > 0
when equations (32) and (33) are solved. The most diffi-
cult numerical problem encountered is the determination
of vectors at § = %- which specify the different asymp-
totic solutions. There are several cases which must be
considered separately. The individual cases can be clas-
sified according to the character of the roots of the

dispersion relation.

CASE 1: The roots of the dispersion relation, A

1
and A, » are real and distinct. 1In addition,
2
g 2
— -k 0
" 7
Upon solving equation (32), constants €15 €, €5,

and e, are determined such that
e,DC (E) + e,DC () = INV (&) - e INV_ (&)

- e4TLSOL(£) . (106)
If A, > 1, A then

1 2 2
A=A -
_ ) 2 "1 1 2



-101-

X2~K

However, £ becomes negligible as € - 0 ,

~11

for 0 <z £ B <o, For e x~10 the vector

A=A

305 1 can be neglected below the transition region

except for XZ - A ® 0 . The case 02/y ~k* =0 is a
special situation which is discussed in case 4.

Thus, above the boundary layer and below the tran-
sition layer, the solution of the viscous problem can be
accurately approximated by a multiple of the inviscid
solution with finite kinetic energy in an infinite column
of fluid.

If 0 < A<z < B <o, then (107) implies that
the solution with finite kinetic energy is approached uni-
formly on this interval. The only calculations which must
be performed for real A and A are for A, = A

1 2 1
(case 3) and 02/Y - kP =0 (case 4).

2

CASE 2: The roots of the dispersion relation (13)
are complex. For this case the results of Yanowitch
[2,3] and Lindzen [4] imply that for small 8 , the
dimensionless, vertical wave number defined in (20), the
reflection coefficient is large and for B 1large the
reflection coefficient is small. Thus, it is expected
that reflection is significant near the boundaries of the

shaded regions in figure 1.
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Aside from a scaling constant, the solution above

the boundary layer and below the transition layer is

approximately
U (2) U, (2) U, (2)
~ * g : (108)
W(z) W, (2) W, (z)
U, (z)1 . . e . .
where i is a solution of the inviscid differential
W. (z)
l =
equation (12) for 1 =1 or 2 and normalized so that
Ui(o) =1 . In addition, the inviscid solutions are num-
d such th Uy (2) h d £ d Uz (2)
bered such that Wl(z) as upward energy flux an Wz(z)

has downward energy flux. The constant Ko is, of
course, the reflection coefficient.
If e > 0 1is specified, then Ko is determined

from the constant e, in (32). The scalar e, might be

considered the asymptotic reflection coefficient. The
constant e, is invariant (see theorem B2 in Appendix

B.2) as & > 0 . However, Ko does change as € > 0

If ¢§ = Kﬁ (%) , then

|« | is asymptotically invariant as e =+ 0

gl

for fixed o and k since |e is 1nvariant.

3 |
(109a)
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Arg KR“285 is asymptotically invariant as
e >0, for fixed o and k and the

acoustic wave (109b)
2
Y

Arg KR+286 is asymptotically invariant as

e » 0 for the gravity wave (109c)
2

(Q—-k2<0>
Y

Due to relations (109), it is more useful to compute
arg KRtZBé than arg Ko
It is reasonable to expect arg Ko to change as
e + 0 since the reflection takes place in the transition
region. _he transition region is in the vicinity of
z = &n (é) and this point recedes to infinity as € - 0
Thus, the reflection coefficient can be expected to
undergo a phase change as ¢ - 0
In Appendix B (see B.2, relations (B74) through
(B84)) it is shown that a fixed error tolerance (10—7)

on the asymptotic solutions resulted in an approximate

value of gI where

el ~ (%)2 (110)
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and for |&] > i£I| the truncated asymptotic expansions
have a minimum relative error less than or equal to 10”7,
For a fixed value of k > 0 , o 1is bounded away from
zero in both the acoustic and gravity wave regions (see
figure 1, Section 1.2) as B8 + 0 . If the initial vectors
for the canonical numerical integration from EI to

g = %~ are computed by method II (see B.1), then it is
obvious that the asymptotic initial vectors with inviscid
asymptotic behavior tend uniformly towards each other as

B~ 0 . If the vectors le(z), QQQ(i), INVl(E), and

TLSOL(£) remain linearly independent as B8 = 0 , then
|k  (k,8) ] ~ 1 (111)

as B > 0 since |e3| in equation (32) tends to one as

B+~ 0 . In addition, if e > 0 1is held fixed, then
KR(k,B) - -1 (112)
as B - 0 since e, 1 . Relations (111) and (112) are

an immediate consequence of (31) and the above assumption
on the linear independence of le(i), 992(6), Lgyl(i) and
TLSOL (£) .
CASE 3: The roots of the dispersion relation are
1

equal, that 1is, Ay T A, = > Or a = % . For this case

the solution of the viscous problem in the inviscid region

is approximately
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[U(z)} U, (2) [Ul(z)
= A + B , (113)
W(z)

U, (z)
where [Wl(z)] is an inviscid solution and, for
i

i=10o0r 2, 1is defined in (18). Since the asymptotic
connection relations (32) are invariant as € - 0 it can

be shown that B » » as ¢ + 0 . However,

|B| = O(Qn (é)) (114)

U.(z)
as € > 0 and hence {W2(z)] cannot be neglected in the
2

entire inviscid region. It should be noted that A - 0

as € » 0 since the kinematic boundary condition

(W(0) = 1) requires AxXB to remain finite as € = 0

CASE 4: The roots of the dispersion relation are
2

A. = % and o= X -1 o 9 %2 _'g . In the
1y 2 Y Y

inviscid region the solution of the viscous problem is

approximately given by

[U(z)‘J u,(2) U, (2)
= C + D R (115)
W(z) Wz(z) Wl(z)
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U.(z)
where {Wl(z)‘ is an inviscid solution and, for
i

i=1or 2, is defined in (16). The asymptotic connec-
tion relations (32) determine the constant D and since

the asymptotic connection relations are invariant it fol-

lows that
A —Xz
ID|] = Ole (116)
as € > 0 . Hence D~ 0 as e = 0 since Al > % > AZ
It yv = 1.4, then
kl ~ .714 (117a)
and AZ ~ .286 . (117b)
The kinematic boundary condition (W(o) = 1) requires
W(z) = sz(z) + CDWl(z) ~ 1 (118)
near z = 0 as e > 0 , but Wz(z) is identically zero.
Thus,
1 My
c = 0 <~) (119)
5
as € > 0 , that is, C >® as € > 0 . A resonant

situation develops as € = 0 . For a finite value of €
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like 107! there should be a noticeable resonant peak for

2
the scalar C in the vicinity of 2?‘- 1%

=0

In order to describe the resonant peak, it is useful
to calculate the modulus of C 1in relation (115) for
02/y -k =0 , in addition to the obvious calculations

required for 02/Y - k% = 0 . For this purpose it is best

to normalize the inviscid solutions so that solutions (16)

are approached as OZ/Y - k% > 0 . This is easily accom-
plished; consider
— o\
(2 . o
(Al Aot f?)
- 1 ;
k{x, + = -1
Ul(Z) _ (l Y ) }\lz
= e
W (2) (120a)
1 ] B 1 a
U] 1 A,z -
and - e 120b
k(A -l)
L\ 2y
where xl and 12 are assumed real and
A, < 2 o< o (121)
2 2 1

for vy = 1.4
Not only is it important to organize the computa-

tions but it is also necessary to consider the actual
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computational devices which perform the calculations. The
calculation of the DC solutions was accomplished on a
UNIVAC 1108 in double-precision (about 18 significant
figures). Three hundred terms were generated from the
recursion relation (A10) in Appendix A and then summed at
£ = % . Due to certain compiler difficulties it was not
possible to perform all the computations on the 1108. The
calculation of asymptotic initial vectors and the canon-
ical numerical integration was carried out on an IBM 7094
in single-precision {about eight significant figures).

The error check (step 5 of the algorithm in Section 4.1)
indicated that approximately four significant figures are

maintained in the calculations.
5.2 NUMERICAL RESULTS

This section contains the numerical results for
the viscous problem formulated in Section 2. The calcu-
lations were performed for ¢ = 10”1t , which is com-
parable to a value in the earth's atmosphere. The other
dimensionless parameters, k and o , when equal to
unity, correspond to a horizontal wavelength of about
45 km and a frequency of 2.5 radians per minute, respec-
tively.

CASE 1: The roots of the dispersion relation are

real and distinct. In Section 5.1 it was shown that the
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only calculations required are for Al A (case 3) and
02/y -k 0 (case 4).

CASE 2: The roots of the dispersion relation are
complex or the inviscid solutions are wavelike in z
The reflection coefficient, Ko in (108), is computed for

various values of o and k . Due to the remarks made in

Section 1 about some recent research of Yanowitch, it will

be worthwhile to compare [k | and e ™ or equivalently
n |KRI and -m8. To avoid confusion Kepa Will denote the
acoustic reflection coefficient and Kog will denote the
gravity reflection coefficient. 1In order to construct
figures 2 through 7 (pp. 119-124) the values of Keg and
Ko, were computed for g = .01, .1, .2, .4, .8, and 1.6
For k = .5 , Kpa Was computed for the additional B

values of .5, .6, .7, .9 and 1.0.
If the reflection coefficients are considered as
functions of the horizontal and vertical wave numbers,

then figures 2 through 7 imply

[ (,8) ] < Jp (,8) | s eTTE (122)*°

19The calculations which were performed for
k = .005 1lead to the relation |KRG(.OOS,B)| > ¢ T
However, |KRG(.OOS,B)| - e ™ yas very small and about

equal to the estimate of the error obtained from step 5 of
the numerical algorithm.
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In order to test relation (122) and determine any

sensitivity to changes in vy , some computations were per-

formed for vy = 4 . Surprisingly, the acoustic reflection
coefficient was in much better agreement with e—TTB than
the gravity reflection coefficient for <y = 4 . Thus, it

appears that (122) is a quantitative rather than a quali-
tative relation; nevertheless (122) is a useful summary
of the calculations.

In order to completely specify Keg and Kea it
is also necessary to determine the argument of these com-
plex quantities. Due to the remarks in Section 5.1 it is
best to compute arg KRG(k,B)+286 and arg KRA(k,B)-ZBS to

obtain a useful profile of the argument of the reflection

coefficient as e - 0 (tables I through VII).

TABLE I. — ARGUMENT OF THE REFLECTION COEFFICIENTS

FOR k = .005

B arg K G+286 arg KRA~286
0.01 -3.12 -2.99

.1 -2.94 -1.68

.2 -2.67 - .515

.4 -1.71 .983

.8 1.71 2.26
1.6 - .567 2.44
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TABLE II. — ARGUMENT OF THE REFLECTION COEFFICIENTS
FOR k = .05
g arg KRG+286 arg KRA—ZBS
0.0 3,12 -3.00
At 2.97 -1.75
.2 2.86 - {641
4 2.99 .788
.8 -1.66 2,03
1.6 -1.34 2.20
TABLE TII. — ARGUMENT OF THE REFLECTION COEFFICIENTS
FOR k = .25
8 arg K. +2896 arg K., -2B6
0.0 3.11 -3.02
.1 2.88 -2.00
.2 2.67 -1.09
4 2.53 .099
.8 -3.03 1.14
1.6 1.17 1.20
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TABLE IV. — ARGUMENT OF THE REFLECTION COEFFICIENTS

FOR k = .5
B arg KRG+ZBG arg KRA—286
.01 3.10 -3.11
1 2.76 -2.79
.2 2.54 -2.41
.4 2.52 - .308
.5 .165
.6 .345
.7 L438
.8 -2.99 L487
.9 .507
1.0 .504
1.6 .547 127

TABLE V. — ARGUMENT OF THE REFLECTION COEFFICIENTS

FOR k = .75

8 arg KRG+286 arg KRA"286
0.01 3.10 3.12

.1 2.73 2.89

.2 2.54 2.64

4 2.68 2.10

.8 -2.61 .804
1.6 .822 - .664
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TABLE VI. — ARGUMENT OF THE REFLECTION COEFFICIENTS

FOR k =1.0

B arg K, +288 arg «_,-288
0.01 3.11 3.10

1 2,83 2.75

.2 2.74 2.38

.4 3.06 1.74

.8 -1.97 .665
1.6 1.55 -1.24

TABLE VII. — ARGUMENT OF THE REFLECTION COEFFICIENTS

FOR k = 1.5

B arg k. +288 arg «_.-2B6
0.01 3.13 3.08

-1 3.07 2.56

.2 -3.07 2.00

A4 -2.32 1.03

.8 - 441 - .409
1.6 -2.67 -2.59
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The figures 2 through 7 and tables I through VII
can be used to construct a multiple of the solution to
the viscous problem above the boundary layer and below
the transition layer. Thus, it is desirable to obtain
some estimate of the lower boundary of the transition
layer and the upper boundary of the boundary layer.

In Section 3.2, relation (30) implies that the

boundary layer solution decreases by a factor é as z

2YE
5 -

For e = 10" 1!

is increased by a linear combi-
nation of inviscid solutions agrees with the solution to
the viscous problem to four significant figures if

< <
2y, S 222, and

-5
z . 6 x10 ° (123)

b.%. /5
The upper boundary of the boundary layer varies from
several meters for the gravity wave (k = .005, B = 1.6)
to less than one-half meter (k = 1.5, B = 1.6) for the
acoustic wave.

In order to obtain a more detailed description of
the solution to the viscous problem, some computations
weré performed which illustrate how the transition region
joins the inviscid and viscous regions. It is useful for
this purpose to consider plots of |U(Z)|x/TE] (ordinate)
versus &n /|E| (abscissa) and |W(E)|x/TE] versus n /TET.
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The ordinates |U(&)|xv/]E] and |W(E)|V/TE] are proportional
to the square roots of the kinetic energies associated
with the horizontal and vertical velocity components,
respectively. The abscissa, &n /[E|, is proportional to
z/2 and hence a one-unit change in 2n /TET'corresponds to
two scale heights (see figures 8 through 14). It should
be noted that convenient multiples of the viscous solu-
tions are plotted in figures 8 through 14.

In figures 8 through 14 the inviscid region is
easily identified. It appears that the inviscid region
begins at about 2z = 20 (140 km) and extends downward

from this height, that is, is approximately 20

Ze g
scale heights. The oscillation about the dotted line is
caused by alternate constructive and destructive inter-
ference of the inviscid solutions with upward and down-
ward energy propagation. The dotted line, in figures 8
through 14, corresponds to a multiple of the inviscid
solution which has upward energy propagation and hence
satisfies the radiation condition. The amplitude of the
oscillation about this dotted line is an indication of
how poor or good an approximation the radiation condition
is. For B = 1.6 the radiation condition appears to be
quite good (in the inviscid region); if 8 = .4 it 1is

unsatisfactory. Relation (122) implies that the
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radiation condition introduces an error of about 4 per-
cent for B8 =1 , and for larger values of B a
smaller error is expected. Thus, if the vertical wave-
length is less than 45 km (B8 > 1) the radiation condition
is substantially correct,

CASE 3: The roots of the dispersion relation are
equal or o = %- and Ay = A, = % . The constants A
and B in relation (113) are listed in tables VIII and

IX.

TABLE VIII. — THE CONSTANTS A AND B , DEFINED IN

RELATION (113), FOR o2/y - k2 < 0 AND vy = 1.4

k o A B |B| Jarg B
0.005§0.00535f-11.5-.935 1 -25.4+1.57 1125.5] 3.08
.05 .0534 §-1.07-.078 1 -27.3+1.57 1§27.3} 3.08
.25 .260 -.170-.013 1 -27.7+1.69 1327.8} 3.08
.S 447 -.044-.0036 1 -28.5+1.87 1028.5¢% 3.08
.75 .505 -.018-.0013 1 -28.7+1.66 1}28.7} 3.08
1.0 .520 -.012-.00083 1 [-28.2+1.58 1}28.2}) 3.09
1.5 .529 -.0073-.00054 i§-27.0+1.57 1§427.0} 3.08
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DEFINED IN

RELATION (113), for o%/y - k> > 0 AND vy = 1.4

k o A B |B| Jarg B
0.005§0.59210.00015-.0000084 i}-34.,0-1.57 i}J34.0f-3.10

.05 .592¢ .00154-.000088 i }-33.6-1.59 i}33.6]1-3.09

.25 .608f .0099-.00084 i -32.3-2.27 1i132.44-3.07

.5 .707] .043-.0083 i -28.1-4.31 1§28.4]-2.99

.75 .939¢ .120-.015 i -25.1-2.46 1}§25.29-3.04
1.0 1.22 .199-.019 1 -24.4-1.80 i|24.41-3.07
1.5 1.79 .357-.032 1 -23.4-1.59 1§23.4}-3.07

CASE 4: The roots of the dispersion relation are
21 _y -1 2 2 _ .
Xl =5 and Az = Y or o°/y - k™ =20 In addi-
tion, computations were performed for
o = (1 + .01)Vy k (124)

The results

figure 15.
There
o?/y - k% =

decrease of

to relation

+

of the computations are summarized in

is a noticeable resonant peak for
0 . Varying o by 1 percent results in a
|C| by approximately a factor of 10° (refer

(115) and figure 15).
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The boundary layer solution is not capable of

reducing U(z) in (115) to zero in 0 £ z < with

’b. 8.
negligible effect on W(z). The value of |C| computed for
e = 10"t depends on the peculiar properties of the
boundary layer solution. Other effects in the earth's
atmosphere more important than viscosity are being

neglected near z = 0 . Therefore, the results for this

case are of dubious value.
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ACOUSTIC seasrsanas
GRAVITY == o e
y = —"B D

THE CURVES Yy = -m8,
y = &n [K [, AND

y = &n lKRAl ARE

INDISTINGUISHABLE
l l ] | ] J ] ]
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
8
Figure 2. — Logarithm of the modulus of the reflection

coefficients for k = ,005, .05
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ACOUSTIC ssessesse
GRAVITY == ==
y = -m8

Figure 3. — Logarithm of the modulus of the reflection
coefficients for k = .25
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ACOUSTIC «vannaune
A GRAVITY = e ==
N y = -18 [——

Figure 4. — Logarithm of the modulus of the reflection
coefficients for k = 0.5
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ACOUSTIC =vsssense
GRAVITY == e

Y 5 TTE —

6 1 | 1 | | | I |
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
B
Figure 5. — Logarithm of the modulus of the reflection

coefficients for k = .75
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ACOUSTIC =sssan=se
GRAVITY ===
y = -78

8

Figure 6. — Logarithm of the modulus of the reflection
coefficients for k = 1.0
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ACOUSTIC =meersee-
GRAVITY == mem ==
y = -m8

L THE CURVES vy = -7g *
AND y = gn IKRGI ARE
INDISTINGUISHABLE
I I l I | l I I
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
B
Figure 7. — Logarithm of the modulus of the reflection

coefficients for k = 1.5
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Figure 8. — Viscous gravity waves for k = .05 and B8 = .4, 1.6

s = Vel
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Figure 9. ~ Viscous gravity waves for k = .5 and B = .4, 1.6
s = V]E]
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Figure 10. — Viscous gravity waves for k = 1.5 and B8 = .4, 1.6
s = Vg
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Figure 11. — Viscous acoustic waves for k = .05 and B = .4, 1.6
s = Vg
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Figure 12. — Viscous acoustic waves for k = .5 and B = .4, .5, .6

s = Vg
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Figure 13. — Viscous acoustic waves for k = .5 and B = .4, 1.6

s = VIl
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Figure 14. — Viscous acoustic waves for

k =1.5 and B = .4, 1.6
s = Jg| .
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Figure 15. — The resonant Lamb wave and 1 percent variation in
-11

the frequency for ¢ = 10 and vy = 1.4 . The scalar C
is defined in relation (115).
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5.3 CONCLUSIONS

For the case of real distinct roots of the disper-
sion relation (13) and cz/y —bk2 # 0 , the solution of
the viscous problem approaches a multiple of the inviscid
solution with finite kinetic energy in a column of fluid
of finite cross section as € > 0 or wu > 0 . Moreover,
the convergence is uniform on any interval
0 <A<z <B<® as u~=>0 (see Section 5.1, case 1).
This conclusion is reasonable and in complete agreement
with the results obtained by Yanowitch [2,3]. If
OZ/Y - k2 = 0 a resonant situation develops and the
limiting case, as € »~ 0 , 7results in a viscous solution

with a horizontal velocity amplitude which 1is

2-Y
which 1s O (é) ¥ near z = 0 . A nonzero value of
viscosity therefore limits the resonant peak (see case 4
in Sections 5.1 and 5.2).

By far the most interesting case concerns complex
roots of the dispersion relation, that is, inviscid solu-
tions which are wavelike in z . Due to the results of
Yanowitch [2,3] and Lindzen [4] it seems reasonable to

expect that

e (125)

a
o




-134-

However, figures 2 through 7 indicate that (125)
is not satisfied for all horizontal wavelengths. Thus,
the modulus of the reflection coefficient depends on the
model selected; for example, the inclusion of compressi-
bility appears to be quite significant.

A careful examination of figures 2 through 7 indi-

cates that f(k,B), where
£(k,8) = w8 + &n [k (k,B)[] , (126)

has a maximum near k = 8 . If more general problems are
considered, it is probably true that the mathematical

model will play a major role in determining |k at

Rl’
least for small values of B
Several qualitative statements can be made for the

case of solutions which are wavelike in =z

a. Reflection is negligible for B8 1large, that
is, the radiation condition is substantially
correct (refer to discussion of case 2 in

Sections 5.1 and 5.2).

b. Reflection is important for £ small and the
reflection coefficient tends to the limiting
value -1 as B = 0 for fixed e > 0 and

k > 0 (refer to discussion in Section 5.1

and relation (111)).
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c. The modulus of the gravity reflection coeffi-
cient more nearly equals e ™ for all values
of k than does the corresponding acoustic

reflection coefficient for vy = 1.4 (see

figures 2 through 7).

The problem formulated in Section 2 is limited to
small oscillations of the lower boundary =z = 0 . An
estimate of the validity of the linearization can be

obtained by determining the maximum value of

‘{%Ei%]“ » wWhere [%E;%} is a solution of the vis-

cous problem. For the cases which were computed, the

maximum of l‘{%%i%]‘ satisfied
U(z )
U(z) 5 b.%. 20
]« oewe [l - e
where the boundary layer is given by 0 < z < z o and
e 1s assumed to have the value 10711,
The kinematic boundary condition, W(o) =1 , 1is

equivalent to requiring an amplitude of g of the

2oEstimate (127) is correct for k = .05, 0.5, 1.5 ,
and B = .4 and B = 1.6 for both the acoustic and
gravity waves. For real distinct roots of the dispersion
relation, a considerably smaller bound should result
since the inviscid solution with finite kinetic energy in
an infinite column of fluid grows less rapidly than

z/2 R
e as 2z 1ncreases,.
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oscillation of the lower boundary. The amplitude of the
oscillation scales the solution of the viscous problem.

6 H or 0.7 cm would

Hence, an oscillation of amplitude 10
be more reasonable, that is, consistent with the lineari-
zation. Of course the resonant case GZ/Y - %% =0

would require a much smaller amplitude in order for the

linearization to be valid since |U(z)\ is very large.
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APPENDIX A

THE REGULAR SINGULARITY ¢ = 0

In this appendix the regular singularity & = 0
is investigated. Two linearly independent solutions of
the viscous differential equation (25) are developed
about & = 0 , which satisfy the DC (11). 1In addition,
it is shown that there exist two other solutions of

equation (25) which violate the DC,.
A.1 THE DC SOLUTIONS

Assume that a fundamental matrix solution of

equation (25) can be expressed in the form

[o 0]

0(5) = [ s em) x T, (A1)
m=0
where
Sm are constant square matrices for (A2a)
m= 0,1,2,+-
J is the Jordan canonical form of R (A2b)

(defined in relations (24))

2lIn all subsequent contexts the functions &n& will
be defined to be the principal branch.
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SO is a constant nonsingular matrix such (A2c)
that SOJ = RS0

g7 = '8 ang 2n& is the principal branch (A2d)

of ng

In order to construct S, the eigenvalues and
eigenvectors of R will be determined. It is easily
shown that the eigenvalues of R are +k and -k and each

eigenvalue is of multiplicity two. Only one-parameter

solutions are obtained upon solving

(R - kI)e, = 0 (A3a)

and (R + kI)g3 = 0 |, (A3b)
1

where e, = ax 5 R let a =1 (Ada)
k
1

and e, = bx | X, let b=1. (A4b)
k

Thus, the Jordan canonical form of R 1is

J = . (A5)
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In addition to the vectors e, and e, the generalized

eigenvectors e, and e, (solutions of (A6)) must also

be determined.

(R - kI)g2 = e (A6a)

and (R + kI)g4 = e . (A6b)

If the vectors e, and €, are normalized by setting

the first components equal to one, then

e, = (A7a)

and e, = _(k N 7) : (A7b)
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The vectors €1 €55 S5 and e, define the matrix SO ,
that 1is,
1 1 1 1
k k + 1 -k 1 -k
_ (A8)
So Tl k-7 (k7
k k
k k -6 k k +6
If (A1) is substituted into (25) and SO is
defined by (A8), then the recursion relation
Sperl(m + 1)L + J) + KS [mI + J] = RS_, . + DS_ (A9)

is obtained. If §éj) denotes the jti column of Sm ,

then (A9) can be written as

(3) (3-1) (3) (j-1)
(m + 1 + Qj)§m+1 + 6j§m+1 + K| (m + zj)§m + 6j§m }

- (3) (3)
Rsni1 * Dsp?0 (A10)
where 61 = 63 = 0 , 62 = 64 = 1 (Alla)
and T S k L, = %, = -k . (Al1b)

The recursion relation (Al0) can be placed in the form

S
—m+1 m —m+ —m

\

(3)  _  ~(3) () (3) [« (3-1) (5-1)
st = ¢l §mj + 5ij3 (s 177+ Ks ) ,  (A12)
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-1

where D;j) = <[l +m+ 1T - R] (A13a)

-1

and ¢S = [(a, +m+ 1T ~RITD - (m+ 2)K]

(A13b)

Due to the DC (11) the vector solutions corre-
sponding to j = 3 and 4 will be discarded. Therefore,
it is only necessary to develop the recursion relation

(A12) in detail for j = 1 and 2

For j = 1or 2, 2j = k . Thus, consider
— 3 2 _ 2}(2 4 2 _ 3}(2 _k3 X -
— 3 : — T =t
k(402 - 3K2 4e? - 3k% 43 o2
o w . ( g- -3 ) gl4g ; , - g
gl - -
@ - 5;- kg glag’ : 5%%) 36° - 4%
K3 kg2 K2(3g2 - 4k?) Ge? - 1K)
e S
(Alda)
0 o o 0]
0 0 0 0
K = (A14b)
0 0 0 0
3
O 0 0 ‘.ZI.-
L‘ —
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and
0 0 0 0|
2
o 0 % K
[D - (m + K)K] =
0 0 0 0
-3(y - Dk 3k 3¢ 3g
Y A S
(Aldc)
where g = k+m+1 (Al4d)

It is clear that the recursion relation (Al2) is
well defined?? as long as the matrix [(2j+m+1)I-R] is
nonsingular for m = 0,1,2,¢+« . Recall that [-kI-R]
and [kI-R] are singular matrices since k and -k are
the eigen&alues of R . Moreover, k 1is the only
nonnegative eigenvalue of R and, hence, [(k+m+1)I-R]
can never be singular for m = 0,1,2,+++ . Thus, the
recursion relation (A12) is always well defined for
j=1o0r 2

Quite obviously, if k is an integral multiple
of one-half, then the recursion relation (Al2) breaks

down for j = 3 or 4 since [(-k+m+1)I-R] is singular

22The recursion relation (A12) is well defined if
the vectors §é3) , for j =1,2,3 and 4 uniquely
specify the vectors iéj) for j = 1,2,3 and 4 and all

positive integral subscripts m .
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when m = 2k - 1 . This difficulty can be overcome by
introducing a shearing-type transformation [8, Chapter
4, Section 4] of the differential equation (25). This
tactic is unnecessary since the solutions corresponding
to j = 3 or 4 are to be discarded because they violate
the DC. The approach adopted for j = 3 or 4 1s one
that is used over and over again in asymptotics and 1s

discussed in Section A.2.

Since the recursion relation (Al2) is well defined
for j = 1 or 2 the first two columns of ®(&), defined
in (Al), are solutions of equation (25). Denote the

first two columns of ¢(&) by le(g) and ng(i). Thus,

DC, (&) = Zo s gk (Al5a)
m“_‘
and  DC,(£) = ZO s{2Ve™* 4 (o ©)DC, (8) . (ALSD)
m:

As & > 0 , le(g) and ng(g) exhibit the scalar
growths Ek and (&n E)Ek or e@-kz and ze—kz as z - o« ,
Hence, le(g) and ng(g) satisfy the DC (11). The
expansions (A1l5) converge for 0 < |&| < 4/3 since the
nearest nonzero singularity occurs at & = 4/3 . The

solutions le(g) and ng(g) can be analytically continued

to the whole ray (arg g = -%) since the differential
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equation (25) has no singularities for 0 < |&]| < « and
arg & = -% .
It should be noted that in addition to the decay

Ek

and (&n E)Ek the solutions le(g) and QQZ(E) are not
wavelike in z for sufficiently large =z or equiva-
lently for sufficiently small §& ; that is, the
variation in the argument of the components of le(i)

and 992(6) is bounded in the vicinity of & = 0 . This

is a consequence of

arg(&k) = constant (Al6a)
and arg(fn &) - constant (A16Db)
as & >~ 0 for arg & = -% and

arg g(j)im -+ constant (A17)

m=0 °

as & > 0 ; that is, the components of ZE: géj)gm tend
m=0

to constants as & - 0 . Thus, in the viscous region

the wave motion is damped and not wavelike in z

A.2 THE SOLUTIONS WHICH VIOLATE THE DC

In this section the vector solutions of (25) which
violate the DC are investigated. If k is not an inte-

gral multiple of one-half, then the recursion relation
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(A12) is well defined for j = 3 and 4 . The third and

fourth columns of ¢(&) defined in (Al), exhibit the

k kz

scalar growths &~ and (&n E)E_k as & >0 or e
and ze*? as z > » . Hence the third and fourth columns
of (&) violate the DC (11). If k 1is an integral

multiple of one-half, then the third and fourth columns

of ¢(&) cannot be constructed from (Al) since the
recursion relation (Al2) is not well defined. However,
it can still be shown that there exist two solutions, of
the differential equation (25), which exhibit the scalar
growths E—k and (4n g)g"k as & > 0 . Thus, for all
values of k there exist precisely two linearly inde-

pendent solutions which satisfy the DC (11) and two

other solutions which violate the DC.

Consider
o(5) = s, (A18)
where
J k -
5,67 - {_e_lg (e, + (0 B)eNER,e 75 (e, + (an 5)_6_3)£—kJ
(A19)

and €15 8,5 85 and e, are the column vectors which

define SO (see (A8)). It is easily verified that

d » _ R\ 2
I 0 = <g>@(a) : (A20)
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Suppose ®(£) is a fundamental solution of

equation (25), then
gg o(g) = (%‘+ 0(1))®(g) : (AZ1)

The symbol 0(1) is used in (A21) to denote that the
remaining description of the coefficient matrix is
bounded as & =+ 0

Suppose the jth column of 8(&) is denoted by
§j(g) and the jth column of &(£) is denoted by gj(g).
If the first two columns of ®(§) are chosen to be the

convergent expansions (Al5), then it is easily verified

that

Mo, (&) - 8,811 = o) x || (8| as £>0
(A22)23

for j =1 or 2 . If it can also be shown that there

exist solutions 93(5) and 94(5) of equation (ZS) such
that relation (A22) is valid for j = 3 and 4 , then

it immediately follows that 23(5) and g4(g) violate the
DC (11). Thus, 9(&) would consist of two column vectors

which satisfy the DC and two solutions of (25) which

violate the DC. The remainder of this section is devoted

23The maximum norm is used throughout this paper.
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to establishing the existence of solutions 93(£) and
g4(£) which satisfy (A22).

The method of attack is to treat the differential
equation (A21) as though the term 0(1)x®(&), on the
right-hand side of (A21), is an inhomogenous term of
the differential equation. The homogenous part of the
right side of (A21) is (%) ®(£), that is, the homogenous
differential equation is (A20). If the term O(1)x2(&)
were a known function, then a closed-form solution of
the differential equation (A21) could be obtained by
the method of variation of parameters. Since 0(1)x3(§)
is not known, an indefinite integral equation is obtained.

Attempt to determine a vector solution ¢(&), of

equation (A21), of the form

$(E) = (E)c(®) . (A23)

If equation (A23) is substituted into the differential

equation (A21), then
0(5) = [C3()e7r(s)0(W)e(S) ds (AZ4)

is obtained, where 0(1) is defined in (A21).
If

2 A c-1
@l(S) + @2(8) = & " (S) (A25)
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and gj(i) is a continuous solution of

6.(8) = b.(8) + [F(8)8, (5)0(1)¢, () dS
3 3 - 3

B RIGENOLIEENC I CR
then gj(g) is a differentiable solution of

equation (A21). Let

0 0 0 o |
0 0 0 0 N
28 o o s -@n s)sk %0
0 0 O s ]
(s _ns)sTt o o]
. 0 57k 0 0
and  ¢,(S) = S;l
0 0 0 0
| 0 0 0 0

Now consider the Picard iteration

(0) -
¢, (&) = 0

and

oM ) = §e) + fF@E 10)ef (5) ds
0 J

e JE )3, 3010 (8) as
a J

(A26)

(A27a)

(A27b)

(A28a)

(A28D)

(A28D)
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where 0 < |g] < Ja] and &, a, and S 1lie on the ray
arg S = —% and j = 3 or 4

LEMMA Al: The Picard iteration, defined in (A28),
converges for J|a| > 0 sufficiently small. The con-
vergence is uniform for each compact subset of the line
segment 0 < |&] < |al] and arg g = -g . In addition,
if Jal] > 0 is sufficiently small, then the iterants

satisfy the inequality

o™ @ - o™ @Il < (F) 1el™ @, (h299)
where
H,e_g,H it j =3
m,(£) = . (A29D)
’ [le Il + len gl f]e, l| if j =4
PROOF: (induction)
(1) (py _ (o) 2
057 (@) - 907 @) = b

Thus, for n = 0 the relation (A29) is satisfied. The
lemma will now be established for all values of n by
induction. Assume relation (A29) holds for some

n - 1 > -1 and consider
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k
e™ ) - o™ @11 < {ng(lQn e 1)‘% [125™ (8)

=]

- o sy ] = fas]

k
AR ERIEE
-~ )] x Jas] (A30)
where Ml and M2 are chosen so that
$(s)8 £ s|k
118(s)8, ()0 ]] = Ml<I5Ln E 1>|.g_| ,

for 0 < |S| < |g| < |a] for some |a| > 0 .
Similarly

k
e

for 0 < |g| < |S] < |a] . The inductive hypothesis can

188, om || < M2(|zn§

be applied to the integrand in (A30). Thus

) s

$

(n+1) _ (n) £ g
e @) - o™ @)1 < {Ml(\ms

x m (8)|as| + !gMz(Izn 2

X

() s @ tas

(A31)
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The first integral fg on the right side of
(A31) has a singular integrznd (logarithmic growth
near S = 0). However, a logarithmic singularity is
very weak and any power of &n S is integrable on a finite
portion of the ray (arg S = —%) passing through S = 0

Thus, the integral from zero to & in (A31) satisfies
n-1
{5 = o(1) x |E|7F x (%) (A32)

as |al »~ 0
The integral from a to & in (A31) can be
bounded by

fo o (7 g te17 5o &

" 1)I§’kmj(3)[ds[

2 S
(A33)
g%
However, l§ tends to zero faster than any power of
}Qn % tends to infinity as é tends to zero. Thus,

the integrand on the right side of (A33) is uniformly

bounded for 0 < [&] < |S| < |a] . Therefore,

n-1
£€ = o(1) x |gi"k X (%) (A34)

as |a] » 0
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If J|al] > 0 is chosen sufficiently small, then

relations (A32) and (A34) imply

[ . gt

< (5) e on e

NOTE: The value of the constant a can be

chosen independent of the superscript n since a must

2

for 0 < |g| < |a] and clearly this can be done since

k
& g
Q/ng —S- ,

and mj(g) do not depend on the superscript n .

only be chosen sufficiently small to satisfy

el tast o f o €

1 g €
-z- > MZ'&’: (121'1 '-S"

x mj(a)ldSI

b4

the constants Ml and M2 and functions

Thus, relation (A29) is established by induction,

but (A29) implies

M+K+1

i-1
GG (1) < e, @

19
i=M+1
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since

H_@_;M+l+K) (E) _ 9;M) (E)H < |‘$;M+1+K) (g) _ _@§M+K) (E)H

(M+K)

@ - o MY @]

+ e
+ e o e + ‘!.CRJ(M—\L]-)(&)

o
NNCRN

Hence, the Picard iteration converges uniformly in & on

each compact subset of 0 < |g&]| < |a] and arg & = -

ST

Q.E.D.

THEOREM Al: The Picard iterants gén)(g) and
gén)(g), defined in relations (A28), converge uniformly
to the solutions QB(E) and g4(£) of the differential

equation (25), respectively, and

[1e,8) - ¢ &)1 = o) x [l (E)]] (A35)

as £ >0 and arg & = —% .
PROOF: Since the Picard iterants gé“)(g) converge
uniformly for each compact subset of 0 < |&]| < |al

and arg & = —% , thus the 1imit function gj(g), where

n-+cor-4

- lim, (n)
¢,(8) 87 (2)
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is a solution of the differential equation (25) for

0 < |&] < ]a] . This follows because gj(g) is a con-
tinuous solution of the integral equation (A26) and,
hence, is a differentiable solution of the differential

equation (25). In addition, the estimate (A29) implies
[les @11 < 2lel™n, @)

where mj(E) is defined in lemma Al. Thus,

-8 £ g
e, (6) - 8,0 < £2M1<|gn§

; ngMz(’Qn %

a

. 1)’§{kisl’kmj(8){d8|

k
. 1)}%4 ] 7 m, (8
. lds] . (A36)

The integrals on the right side of (A36) must be

estimated separately as & - 0

g -k (€ 3 - -k
£ < el ! 2Ml(izn S 1>mj(8)|d8| = o(1) x |£|
since any power of 'Qn %' is integrable near % =0

The integration from a to & on the right side of
(A36) is not handled so easily. For |&] > 0 suffi-

ciently small the following inequality is satisfied:

3
0 < el < VIET < |lal
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Consider fg on the right side of (A36); then
a
£ VTS £
[ ,

and

2

a

3 £ 3 £
TETer VTET
[T ZMZiEI‘Zk”mj(a)J '“(]zné—
a

< |g]*|ds] (A37)
The integrand on the right side of (A37) is bounded as

lg] ~ 0 since |E|k(\2n % + 1> is bounded. The factor in

front of the integral on the right side of (A37) 1is

obviously o(l)XIEI—kmj(g) as |g] 0 .

All that remains to be shown is that

E -—
l. = o(1) x |g] kmj(i) as || - 0 .
el et
€ £ 2k
! . ZMzial'kmj(a)l : ('SLn—g— +1>[§-| |ds|
IEITET frnggT

(A38)
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but the integrand on the right side of (A38) is uniformly
£

S

over an interval which shrinks to zero as & =+ 0

bounded for 0 <

< 1 . The integrand is integrated

Thus,

[

&
/TET ey

= o0(1) x lal‘kmj(z) as |g] » 0
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APPENDIX B

THE IRREGULAR SINGULARITY & = «

In this appendix the formal asymptotic expansions
about § =‘w are developed and investigated. Two
methods are considered. One method of obtaining asymp-
totic solutions, referred to as method I, consists of
transforming the differential equation (25) until a guess
can be made concerning the form of a fundamental set of
asymptotic expansions. The other method, called method
IT, avoids the many transformations required in method I.
However, method II only determines the asymptotic expan-
sions with algebraic growth in §& , that is, only the
asymptotic expansions with lead terms which correspond to
the inviscid solutions are determined. Multiples of the
boundary layer and transition layer solutions can be
determined by numerical integration. Thus, for large
values of & a fundamental set of approximate solutions
of equation (25) can be obtained by method ITI.

The proof of the existence of actual solutions of
the differential equation (25) which are asymptotic to
the formal expansions about the irregular singularity,
g€ = o , follows a rather standard format [8, Chapter 5].

For this reason no attempt will be made to establish
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the asymptotic nature of the formal expansions, but this

property will be used freely.
B.1 FORMAL ASYMPTOTIC EXPANSIONS

In this section the formal expansions of the dif-
ferential equation (25) about the irregular singularity
g = » are developed for four distinct cases:

CASE 1: The roots of the dispersion relation (13)
are distinct, In addition, Z(Al - kz) # integer and
Oz/y % # 0

CASE 2: The roots of the dispersion relation are
equal or Al = Az = %

CASE 3: The roots of the dispersion relation
equal an integral multiple of one-half.

CASE 4%%: o%/y - k% = 0

CASE 1: 2(>\l - Az) # integer and oz/y - k2 20

Consider the differential equation (25) which can

be written in the form

dy (&) = _
— - (ZAna n)z(i) , (B1)
n=0
where ;g%Ang_ converges for |&]| > %- and

2ffethod I is used for cases 1, 2, and 3; method II
is used for case 4.
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0 0o 0 0]
2
o 2 k
L 2 I (B2a)
0 0 0 0
~ 0 1 0 0]
4%2 0 . K
3 3
A = , (B2b)
0 ) 0 1
2
Yy ol x4
K Y
and for n > 2
B 0 0 0 ]
0 0 0 0
A = 0 0
n
n-1 _ n-2 n-2 2 n-1
YU T T )
\ Y 3 3 3y 3 ]
(B2c)

Since Aé = 0 , equation (B1) falls in the class
of differential equations with a nilpotent lead coeffi-
cient matrix. The formal asymptotic solutions are not
trivially determined for this class of differential equa-
tions. One approach is to transform (Bl) so that the
transformed equation has a form for which an immediate
guess can be made concerning the asymptotic solutions

[10]. This approach (method I) will now be developed.
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The first transformation to be considered is a simi-

larity transformation. Let

y() = BEy(&) (B3a)
where
B 1 0]
0 0 1
2
E = Ykz_g__) 8 0 0 (B3b)
k Y 1 2 1
2 (o]
and
0 0 . k 0
vyk® - o
1 0 k 0
2 2
-1 o - vk
E = X . ) (B3c)
2 [e} i .
- . -k
X - 1 Y
2
S _ k2 0 k k
K Y

The vector ¥(g) then satisfies the differential equation

a5 ( @, |
‘y“g ) (ZA g‘“)y_(z) , (B4a)
n=0 n

[a®




where
Thus,
Ao
0
0
Al =
2
4k 2
R
o%a

and for n > 2
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= E A E
n
0 0 0
0 0 0
0 0 0
0 0 o0
1
Y
1
~
2
k2 + 9 l -
YooY
2
o (y - 1)
2
Y

9

IO

(B4b)

(B5a)
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i 0 0 0 0 ]

0 0 0 0
A"=%9”W%%iﬁ+<*-vfﬂ%3*f) ETEE) @ @)
(g)"'zgg Ll @o? - (4 v 1) (g)““(oz;kz) (3) % (;)“‘2(k2 -4)
(B5¢)

and the scalar o 1is defined in (13).

Now consider the shearing transformation

§(£) = diagonal (1, 1, 1, %-)i(r) , (B6a)
;arg &
where T o= /gl e ? (B6b)
1 0 0]
and diagonal(l, 1, 1, l) - |0 0f ,  (B60)
T 0 0 of
1
oo 0 g

The vector i{T) satisfies the differential equation

2

4 (v) Y
T = (r;)AnT )zm , (B7a)




where

2 A,

n=0

Thus,

0
it

T

-1

PRy
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: S % _-2n
21 diagonal(1l,1,1,1) ZLbAnT
n:

1

. diagonal(l,l,l,?) + diagonal(0,0,0,

0 0
2 2
2 Y
- Y _
2 0
Y
2 )
Y
2 2
N 9__(; 2 20
Y\Y 3 Y
0 0

1

T

)

(B7b)

(B8a)
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_ . . 0 2 7]
VK2 - o2
2
0 0 0 2+
o2 - ykZ
o=
2 2
4 207 + 2
0 0 0 3" Y
4 y-1 .2 g 2} f4o 2 8 02 - k2 2
i "k v i °
(B8c)
and for n > 2
—_ 0 0 0 0
0 0 0 0
i = - nelf 2_ 2 n-2
2n-1 —Z(%) 2[%1;_1 2 (o? - Ykz)(%:,—z . kz)} '2(%) (a Yk ) z(i}) k2 0
n-2
o 0 0 2(%) ( ’ §)
(B8d)
and
r 0 0 0 0 N
0 0 0 0
EZH N 4\""2 (4 2
0 0 0 2(3) (3 -k )
FARied R 2 nf 2,2 n-1
TR e )] @) e
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Now consider another similarity transformation.

Let
F(t) = Fy(t)
where
1 1 0 0 ]
Y2
_Y s o 0 0 0
F = e vy
o w F B
|0 0 1 1|
and
0 Sy -1 0
Y o
1 y - 1
5 0
Y o
7=
/_Zga Y o(y - 1) o
2
A 2V
_/~20“ My oy - 1) o
> o
2y 2VY

then iﬁT) satisfies the differential equation

(B9a)
(B9b)
0
0
(B9c)
1
2
1
2
-




dy (1) R .
)4 - E ;g B y(t) (B10a)
aT n -
n=0
2 — -1% B10b
where A= ETAFE . ( )
Thus,
3 ) 20 20 :
A = diagonal{0,0,—, - — (Blla)
0 VY VY
.2 2(y-1) -2/7(y-1) 2 (y-1) -
¥ = 2 3
¥oa v oa
2 2ya _2y-1) 2/y(y-1) -2Y¥(y-1)
YOO Y v2oa voa
i
2 o2(1 2 2
3/2542 ax? k ‘““‘?)Y 2 o {ax? 3 1 202 + 2 3
'YY =T :/%}a Y l} ' o2 (y Y 1) o FY(T o 1)a) z Y 'z
-(3,1) ELEMENT -(3,2) ELEMENT 2°2Y’ 1.3 i

(B11b)



e
N

and for

2n-1

G+ §'7¥T x? - ¢%)a

G - Ykzu

+(3,1) ELEMENT +(3,2) ELEMENT

n

Y-

-(3,1) ELEMENT

{_(4>n—2G . (é)n_l(cz-kz)ya
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-on XL

Yo

g 7 * 2 ;1
vk“-o Ya

|

AX, Aow , y/Aor1),
[+3 2 2
Yk®-o Y
¥ Aoa w Y a(y-1)
o 2 2 N
k-0 Y
4]
0

il(%)n‘z[kzya - G}

3

-(3,2) ELEMENT

+(1,3) ELEMENT

+{2,3) ELEMENT

-(4,3) ELEMENT

-(3,3) ELEMENT

(Bllc)
0 0 N
0 0

%)n—Z(Zkz ) §)

(B11d)
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2n

B (e () Tedm @S $EA ey m
+(3,1) ELEMENT +(3,2) ELEMENT (%)n-z}(kz - %)_;: . %kzﬁ -(3,3) ELEMENT
L Y -
(Blle)
where
c = 4y -1,2, (62 - yk?) ﬁii + k2 (B11f)
5y v 3y
1
H = 1+ —/Mm—— & (B1l1lg)
2 2
o” - vk

Sibuya-type transformations are now considered.
The purpose of these transformations is to reduce the
off-diagonal elements of the coefficient matrix to zero.
This procedure will be modified. Only the off-diagonal
elements of the matrix associated with %» will be
reduced to zero. This is a simpler task and ensures the
convergence of the transformed coefficient matrix [10,
Chapter 1IV].

Let

F(1) = P(OX() (B12a)
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where
P
= 1
P(1) PO * o R
P = 1 (identity matrix),
and
i 0 0
0 0

~
[
Ll
3
=]
LN
R
+
&
x
[N
1 — 1
+
=
[N)
+
Q
S
[
wira
e
g
-
LR |
Q
N
2

Fav - k
2YT J (21)0'2-3_

+(3,1) ELEMENT

(Do 2K

then X(t) satisfies the differential equation

ax (1)

D (e
n=0

where

C = diagonal(o, 0

(B12b)

(B12c)

(B12d)
(B13a)
(B13b)
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2 2(y-1) 0 0
Y Y
2 2ya -2(y-1)
= - 0
y y-1 Y 0
Cl = ]
2
0 0 1 20242 3
2 Y 2
2
0 0 207+2 é 1
L Y 2 2
(B13c)
c, = KA, +XpP -PC +P (B13d)
and for n > 3
c = A +A P -PC . . (B13e)

One additional transformation, a combination of

a similarity and a Sibuya transformation, reduces C, to

diagonal form and leaves CO unchanged. Consider

X(t) = B(oz(n) (Bl4a)
where
B(r) = B, + f§ , (B14b)
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(Bl4c)

(B14d)

(Blde)

! 1 0o 0]
1 - le 1 - kzy . .
~ y -1 Yy - 1
P = ’
0 0 0 1 0
0 0 0 1]
1 - Xzy v -1 . g}
YO - A) yO, - A
Aly -1 v -1 . .
YO, - vy Oy -3
~o1 ‘
PO =
0 0 1 0
0 0 0 1
and
0 0 0 0 ]
0 0 0 0
17T, . A3 202 % 2
Ta \2 Y
2 .
0 0 fi(gg__i_g - é) 0
L 4o Y 2 —
RECALL: A, and are the roots of the dispersion

1
relation (13).

oP
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Thus,
dZ(t) ©
— _ -n
- - (221%3- )g(T) , (B15)
n=0
where
By = diagonal(o, 0, Zg’ 29 , (Blo6a)
YooY
_ g i ) 1 1
B, = dlagonal( Zh1s t2h gy, 5, 7) , (B16b)
= p-1 ) 5 _ B 3
B2 = P0 {C2PO + Clpl PlBl + Pl} , (Bl6c)

B = PlicP +c B -PFB _} . (B164d)

For sufficiently large |t| the expansion :E:Bnr_n con-
n=0

verges [10, pp. 54,55]. It is not important for the

present analysis to determine how large |t| must be to

ensure convergence. It should be noted that the trans-

formations E, F, diagonal @, 1, 1, %), P(t), and P (1)
2

are nonsingular for A, # 1, , 27 -k*#0, and |1|

sufficiently large.
The differential equation (B15) can be used to
develop formal expansions about & = « . The matrices

BO and Bl suggest attempting solutions of the form
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L ~(n+2kl)
z, (1) = Yopr (B17a)
’ n=0
R L -(n+2k2)
Z, (1) = XYar (B17b)
! n=0
1 20T
L ) E—n /—
Z, L(T) = > roT e’ , (B17¢)
! n=0
2071
~ L -—n
and L) = st e (17d)
! n=0 ¢
where L = o , For a finite value of L the formal

truncated solutions are obtained. NOTE: The circumflex
(A) is introduced to denote that ii,w(r) is only a formal
expansion, that is, the full infinite expansions may
diverge. A vector Z(t) without the circumflex will
denote an actual solution of (B15).

If formal solutions (B17) are substituted into the
differential equation (B15), then the following relations

are obtained:

1
0

P, = Cl ol > (B18a)
0




and

If the constants
then the lead asymptotic
recursively determine the remaining vectors,

r,,and s,

If

A=
o

n
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vectors,

and

1,2,...

(B18b)

(B18c)

(B18d)

in (B18) are all set equal to one,

E‘O b g_o b I“O ? and _S_O b
P,» 4,>
lpn
p
= |27 (B19a)
3pn
.4de




and

then

o - o O o o O

- D O

A
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and q =

and T =

and S =

2. - (2x

+ 1)

(B19b)

(B19c¢c)

(B19d)

(B20a)

(B20b)
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- A L
3Pni1 20 {Bﬂn—l (le TR 2)3p ; » (B20c)
A 1
4pn+l I {4’”1_1_1 + (2)\1 + n + ’2“)4]31,1} (B204d)
where
1"n-1
2ﬂn—l
Th-1 7 = Byp, gttt B ogpy s (B20e)
™
3 n-1
4" n-1]
p
_ 1l n-1
T C S e o7 ey M (Bzla)
1 2
P
_ 2 ' n-1
. = -2nslo (B21b)
.y : 1
39 % TZo 13Pn-1 7 (ZAz T 7)3qn§ » (B2l
A 1
44 T o {4pn—l * (2A2 ot 7)4qn} g (B21d)

where




lrn+l

2rn+l

4rn+l

where

1°n+1

&l

sk
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+ B

n+l£0

(B21le)

(B22a)

(B22b)

(B22¢)

(B224d)

(B22e)

(B23a)
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41 ) 1 B
2°n+1 20 2wn—l ¥ [n (ZAZ ¥ 7>J2Sn} ’ (B23D)
41
3°n+1 4o {3wn—l T ang ’ (B23c)
- ¥
— 4"n-1
. — > , (B23d)
where
[ B
lwn-l
P _ [2¥aa| L B.s + eee + B (B23e)
“n-1 v 22n-1 n+120
3"'n-1
4¥n-1]

The formal truncated solutions satisfy the dif-

ferential equation (B15) approximately. More precisely,

dzi L(T) S -n 1 >
— g = Z()BnT + O(;m) Z‘l,z(T) . (B24)
n:

The recursion relations (B20) through (B23) are

well defined if 2(A, - kz) # integer . In addition the

1
transformations E, F, diagonal (1; 1, 1, %), P(t), and

~ 2
P(T) require that gr - k2 # 0 and |t| be sufficiently

large in order for the differential equation (B15) to have

a convergent expansion for its coefficient matrix.
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CASE 2: The roots of the dispersion relation (13)
are repeated. This 1s equivalent to requiring o = %
in relation (13). The transformations E, diagonal
T

(l, 1, 1, l), F, and P(t) developed for case 1 can be

used for this case also. However, the transformation

ﬁ(T) must be modified since Al = A2 = % .
Let
P(t) = P, + —Ti , (B25a)
where
- -
1 1 0 0
2 -y 1
- v -1 y-1 00
po = , (B25b)
0 ' 0 1 0
0 0 0 1
- —
C 2 “2(y - 1) .
= —dee 2 0
Y Y
-2 - v) 2y - 1) 45
p-1l L Y Y
PO = , (B25c)
0 0 1 0
0 0 0 1
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and
0 0 0 0 ]
0 0 0 0
Py = (3 20% + 2
0 0 0 YY([2 -
4o \2 Y
o o Yxfeirz s 0
L 4o Y 2
(B25d)
Consider
X(t1) = P(Z(t) ; (B26)
then
dz (t) 2 _
— - (ZBnT n)_z_(r) , (B27)
n=0
where
B, = diagonal(o, 0, 9 .29} (B28a)
Ny
1 1 0 0
0o -1 0 0
B. = , (B28b)
1 0 0 % 0
1
0 0 0 =
L 2]




and for n >

The rather simple form of BO
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~._l ~
P0 {CnPo + C

n

attempting formal solutions

gl,oo(T)

and

If «

iP_nT- (n+1

n=0

1
m -
) n
= ST e
n=0

1
4

-lPl

)
’

207

‘/',?

and Bl

(B28c)

(B28d)

suggests

(B29a)

(B29b)

>

(B29c¢c)

(B294d)

and expansions (B29) are formally sub-

stituted into (B27), then the following relations are

obtained:

o o O -

(B30a)
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0 1
1 0
= !
4, < | o el s (B30b)
| 0 _ 0
-0
Iy = S, , (B30c)
- 0]
0
and S = %40 0 (B30d)
b 1 ——

If the scalars c, in (B30) are set equal to one

and cé = 0 , then the following recursion relations are
obtained:

2Py T ‘2ﬂ§_l , (B31a)

1Pn T '{lﬂn'i i zpnf , (B31b)

3Pner 7 '%g 3Th-1 ¢ (n ¥ %>3pnt ’ (B31lc)

- A 3
aPny1 20 {4Wn—l ¥ <n * 7)4pn} ’ (B31d)



where

3%0+1

49n+1

where
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+ B

n+1E0

n+lg0

-

(B31le)

(B32a)

(B32b)

(B32¢)

(B32d)

(B32e)




1Tn+1

2rn+l

a4t n+1

where

lSn+l

2Sn+l

3Sn+l
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vy 3 |
20 lvn—l Ton - 7 lrn * 2rn$ ?
vy 3
75 12¥%n-1 T \R T 7t
3Vn-1
A ,
Yy
4o 4vn—l nox 4rn ’
lvn—l
v
2 n—l = LI B
= Byt Bri1o
3 n-1
47 n-1]

(B33a)

(B33b)

(B33c)

(B33d)

(B33e)

(B34a)

(B34b)

(B34c)

(B34d)
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and
lwn—ﬂ
w = an_l = B.s + eeos + B g B
Tn-1 22n-1 n+13g - (B3de)
3wn—l
[4¥n-1]
CASE 3: Z(Al - Az) = integer
If Ay and A, differ by an odd multiple of one-
half, then method II can be used. If A and A

1 2
differ by an integer, then both method I and method II

are difficult procedures to implement.
If method I is attempted, then additional shearing
and similarity transformations must be developed. This
approach is considered in [8, Chapter 4].
The main difficulty is that the recursion rela-
tions (B20) and (B21) are not both well defined if A

1

and A, differ by an integral multiple of one-half. In
addition to the transformations E, diagonal (1, 1, 1, %),
F, P(1), and P(t) , it is necessary to introduce a

product of shearing, Sibuya, and similarity transforma-

tions.
Consider
il 1 |
H(t) = 7_r Simi X Sibi(r) x diagonal (?, 1, 1, 1)5
i=1
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and (1) = H(OZ(T) . (B36)

The shearing transformation, diagonal (l, 1, 1, 1), does
T

not affect B in (B15). However Bl is replaced by

0
a matrix with eigenvalues -2x1+1, —sz, %, %. The
matrix Sibi(r) is constructed so that the new Bl matrix

is block diagonal with precisely two 2x2Z blocks on the

diagonal. The matrix Siml reduces the (1,1) block to

Jordan form. This process is repeated N times, where
N = Z(Al - x2) . (B37)

The net result is that

dZ (1) . B, .
- - - BO + —,E-— + * e 0 Z__(T) s (Bsga)
BO = BO s (B38b)
and
B , : _ B 1
Bl has eigenvalues 2A1+N, 2%2, 55 and
% and Bl is in Jordan canonical form. (B38c)

This 1is essentially the same problem as case 2 since

-2k, = -2x, * N, (B39)

This procedure of developing several shearing,

Sibuya, and similarity transformations is necessary only
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if full infinite formal expansions are desired. However,
for the purposes of this research it is necessary only to
be assured that the lead terms in the asymptotic expan-
sions, with algebraic growth, correspond to inviscid
solutions and that there exist actual solutions of (25)
which agree with the lead asymptotic terms to arbitrarily
many significant figures as 1 > « along arg T = —% .
If the transformation H(t) defined in (B35) is omitted,
then the only loss is that full infinite formal expan-
sions are not obtained because the recursion relations
(B20) and (B21) are not both well defined. Since no com-
putations for this case are necessary (see comments in
Section 5.1), it is not worthwhile to pursue this case
any further.

The development of formal expansions about the
irregular singularity & = « appears to be quite com-
plex. A direct approach (method II) which avoids the
complicated transformations of the differential equation
(25) will now be developed. The success of this approach
is based on the observation that it 1s necessary only to
determine multiples of the boundary layer and transition
layer solutions, in equations (32) and (33), in order to
solve the viscous problem.

Consider the differential equation (25) which can

be written in the form
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dy (&)
It = A)y(&) (B40a)
where
i 0 1 0 0 ]
(%— ] kz)‘g ' 41::2 0 £ k(e - 1/3)
M % 0 0 0 1
g2 2
Lj Y : (E 1-(‘24/3) k(%'f‘l§%) ‘(TZ'% ZZE ) ’(g -54/3)
(B40;)

The characteristic equation of A(§) for large & has the

following approximate roots L,

~ 1
g, = s (B41a)
)\2
Q,2 =~ “‘E— ’ (B41b)
P, ® == (B41c)
VY&
and L o~ - (B41d)
‘ AE

where Ay and A, are the roots of the dispersion rela-

tion (13). 1In addition, the eigenvectors corresponding
to the roots 2i tend toward constants vectors as
g > » ., The eigenvectors corresponding to %, and L,

tend towards linearly independent vectors if the roots

of the dispersion relation (13) are distinct. The
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eigenvectors corresponding to &, and 2, tend towards

linearly dependent vectors. Relations (B41) suggest

attempting solutions2® of the form

A L -(n+ki)
Y, L&) = E%En £ , (B42)
7 ‘ n= 14

for 1 =1 o0or 2 and L = « , If formal solutions with

exponential growth (ei20¥€v are substituted into (B40),
then the recursion relations are not well defined. Thus,
method II does not yield formal solutions with exponen-
tial growth. Héwever, there is no difficulty in deter-
mining formal solutions of the form (B42).

It will be convenient to substitute directly into

(22) rather than (B40). Consider

o | —(n+ki)
- r;)zn,ig , (B43a)
where
N N T
7 _ - L n,1 : (B43Db)
n,xr /Q, g §

25The double circumflex (A)in relation (B42) denotes
that ii L(E) is a formal solution of (25) which is

obtained by direct substitution into the original dif-
ferential equation (method II).
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and

L

1"n,1i

- +

T
~n,1i
22n,i

!(n * Xi)ZQn,t

Substituting (B43) into (22) leads to

2
K2 - L k(x-l
Y 1 Y
0 = det
k(x-Y’l) A2 - aL o+
i Y i i
L
or
2 2
0 = - [h2 o+ ket
2 U S Y
and
— 1 ———
T
0,1 02/Y _ k2
kx-l)
1 Y
L. —

(B43c)

(B44a)

(B44b)

(B45a)
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, —
k2 - = k(k. +n+ 1 - l)
Y 1 Y -~
'3 .
-1 02 n+l,i
k(xi +n+1 -1 Y ) (xi + n + 1)(xi + n) + ¥
B 2 A, +n 7]
2 a4k (s )
(Al + n) 3 k(‘ 3 R
- A, +n 4(n, + n)2 2n,l
-k i k2 _ i
3 3
- ]
(B45b)
The matrix coefficient of En+l i is nonsingular
in (B45b) for all n if and only if kl and 12 do not

differ by an integer. Thus, it is possible to determine
formal solutions of (22) via the recursion relation (B45)
for xl - Xz # integer

CASE 4: 2;-- k% =0

Different normalizations of the lead vectors, T

0,1
(i =1 or 2), are required.
= 1 -1
= = Y
20,2 [0] s Az 7 (B46a)
_1_(_1_._ 1) +k2
Y \Y 5
-~ _ k( —’Y> _ 1
and O Y s A= T (B46b)
1

and the remaining vectors (@n i o i 1 or 2) can be

14

determined from the recursion relation (B45b).
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Thus, there is little difficulty in determining
formal solutions of the differential equation (22) about
the irregular singularity § = « . However a fundamental
set of formal solutions has not been obtained. Approxi-
mate multiples of the boundary layer and transition layer
solutions can be found instead of determining two addi-
tional formal expansions.

Suppose, due to (B41), it is assumed that there

exist two solutions, XB(E) and X4(£), of the differential

3
02 ReZOJY_

equation (25) which satisfy

- &
Cl ReZOJ; .

M [E] e < Jly,@1 < Mylg] e : |
(B47a)
and
3 ‘ ‘/IE'
-c -ReZGJ: c, -Re20¢/=
3 4
wlel eV < @11 < Mylel te W
(B47b)
for some positive constants Ml’ M, M3, M4, Cis Cys Cg5
and‘c4

If such solutions exist, then there should be
very little difficulty 1in determining multiples of these
solutions numerically. The solution XB(E) grows more
rapidly than X4(£) for increasing |£[ and arg & = —% .
In addition, there are solutions Xl(g) and XQ(E) which
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are asymptotic to §1,m(g) and gz’w(g) and hence grow in
norm essentially like |£|~Re 1 and [E]_Rekz respectively.
Thus, Xa(g) grows more rapidly than Xl(a) and Xz(i) as
|€| increases along the ray arg & = ?% .

Consider a numerical integration in the direction
of increasing |£|. For an arbitrary initial vector it is
expected that the initial vector will contain nonzero
multiples of all four solutionms, Xl(i), Xz(g), X3(£), and
y,(8). Since y (&) dominates in growth as lg] is
increased, a numerical integration of (25) over a suffi-
ciently large |&]| interval in the direction of increasing
l&| should result in nearly a multiple of X3(£). Simi-
larly, if a numerical integration of (25) is performed in
the direc “ion of decreasing |g], then a multiple of y, (&)
can be obtained since 14(5) has dominant .growth for
decreasing |&] and arg & = -% .

The procedure (method II) leads to very good
agreement with the asymptotic solutions obtained by
method I, that is, multiples of 13(£) and 14(5) are
obtained. The agreement of these two approaches provides

a good check on all the transformations performed in

method T.
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B.2 PROPERTIES OF THE ASYMPTOTIC SOLUTIONS

In this section the formal asymptotic solutions
developed in Section B.1l are investigated. All of the
various properties of the asymptotic expansions mentioned
in Sections 3, 4, and 5 are developed.

Associated with the formal asymptotic solutions in

Section B.1 there are four distinct rates of growth,26

201

l_..__.
T_le, T—2A2, 2e /?, and T“e

[\%]
58

1
2 or equivalently

-xl -Az % 2@45 l.—zcwg
£ , & , £7e Y, and tfe v Recall that
e"'Z
£ =35 and 1t = Y€ ; thus
-2A A, ALz
Y o= (ieo) Te Y, (B48a)
-2A A, ALz
T %2 = (ieo) %e * (B48Db)
L ZGJL -z % ’—z/2
Tze /7 = (?80) -exp 29 ¢ 5 (B48€)
/Y Vieo
T 1
1 -20— —
= -z \4 -z/2
and t2e A <? > exp _gg(e ) . (B48d)
ieo =\ /3
vy Vieo
261¢ is tacitly assumed that A, # A, and
02/Y 'S # 0 . The several special cases will also be

investigated.
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20T

Y

1%

In Section 3.2 the scalar growths t2e were

investigated and it was shown that the solutions with

these asymptotic growths are important only in the

boundary layer and transition layer. The scalar growths
A, ALz A, A,z

(ieo) le 1" and (ieo) 26 2 are obviously the same as the

scalar growths associated with the inviscid solutions.

A A
The factors (ieo) 1 and (1e0) 2 are merely scaling con-

stants for a prescribed e > 0 . In addition to the
scalar growths it is also important to investigate the

lead vectors in the formal asymptotic expansions.

Let
T, = E diagonal(l, 1, 1, O)Fpgﬁo (B49a)
T1 = E{diagonal(l, 1, 1, O)[FPOPl + FPlPO]
+ diagonal(0, 0, O, 1)FPO§O} (B49b)
and
T(t) = E diagonal(l, 1, 1, %)FP(T)ﬁ(T) . (B49C)

. 1
where the matrices E, diagonal (1, 1, 1, ?>, F, P(t),

~

P(1), Por Py PO, Pl‘ are defined in Section B.I1.
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Consider
ii,L(E) = T(T)zi,L(T) (i=1,2,3, or 4) (B50a)
and
y; &) = T()z, (1) (B50b)

where §& = 12 and Zi L(T) is defined in relation (B17).

Thus, ii (&) is a formal solution of (25) since zi (1)
is a formal solution of (B15). 1If gi(T) is an actual
solution of the differential equation (B15), then Xi(g)

is an actual solution of the differential equation (25).

The formal truncated solution ii L(E) is of the

form
L L+1
~ - (—= -\,
Y, (&) = }E:bﬂ'ig"n/z + o(é % )) g,
n=0
for i=1 or 2 (B51a)
and
L _(Eil) 1 d.20vg
’ _ -n/2 , o( 2 ) g W
Xj,L(g) - _C:_n,jg g E e )
n=0

(B51b)

for j = 3 or 4 and d3 = +1 and d4 = -1 . The vec-

tors En ., and ¢, are determined by the transforma-

r 1 ’

tion T(t) and the formal truncated expansions




21 L(T) (B17). In particular, the vectors

C .
—OIJ
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are given by

L= (1 - 2, - va)
1 - Ay
“Yo (T_—%—‘)

2
kZYY— 1) (- A1)(k2 )

a3
o o = o

>

b

(B52a)

(B52b)

(B52¢)
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and -
01
_ .Y
$o,4 = TOEO = _8— (BSZd)
LO
Notice that the lead vectors and ¢ are mul-

£0,3 £0,4
tiples of each other. This partially explains the

difficulty in determining the formal asymptotic solutions
with exponential growth.

The formal solutions (B42) can be determined from
relations (B43) and (B45). The lead asymptotic vector

is given
2,1 given by

’

_ . —_
_>\.
1
o? _ k?
a = Y (B53)
""O,l 1
kix, - =
(1 Y)
4, 02/Y ~ k2
Hyfr, - L
3
L 1
for i1 =1 or 2 . Thus, the formal solutions (B42) have
-A -2
the lead asymptotic terms ag ;& = and a £ 2. It has
2o, 20,2 Y
1

already been established that the scalar growths §
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—Xz Klz
correspond to the inviscid growths e

Az

and e , 7respectively. Comparison of relations (B53)

and &

and (15) establishes that the lead asymptotic vectors

a1 and a5 correspond to the inviscid VeCtOfi'
Note that the first and third components of a_ .§ *

0.1
should be compared with Ui(z) and Wi(z) in (15), respec-

tively, due to relations (24). The second and fourth
Ay du; (z)
components of a, iE should be compared with I
dw. (z) ! :
and -—~%E——. These comparisons are easily made since the

normalizations of the lead asymptotic vectors 2, 4 and

2, consisted of specifying the first components of

each of these vectors to be one. The formal solutions
(B17) are normalized by specifying the constants <, in
relations (B18) to be identically one for i =1, 2, 3,
and 4 . The lead asymptotic vectors Eo,i given in

(B52) have a rather complicated form. However, it can be

verified that

_ Y i i
bo,s T—1 (- A - yada, (B54)

for i =1 or 2

Thus, the formaljsolutions (B17) for 1 =1 or 2
are asymptotic developments of actual solutions of (25)
and the lead terms in these formal solutions correspond

to multiples of the inviscid solutions (15).
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For the case o2 = Ykz , the normalization (B46)

leads to a development of a5 ; which corresponds to the

r L

inviscid solutions (16).

One additional case must be considered, namely the

1

case Al = Az =5 - The formal truncated solutions (B51)
are of the form
L L+1 1
~ _‘ _ — e ——
Y, (&) = L—b—n,lg 2 o(g 2 e 2, (B55a)
n=0
N L JLiyy 1
Y, (8) = :E:Eﬂlzg_n/z +olg 2 Jhe %+ % fn gy, L (E)
n=0
(B55b)
and
L L+1)) 1 IJE
-— = d,20¢/=
~ - 4
Xj L(g) = j{:gn,jg n/2 o(g 2 ) £e 3 Y ,
n=0
(B55¢)

1

where j 3or 4, d,=+1 , and d4 = -1

3

Once again it is of interest to investigate the

lead asymptotic terms which do not exhibit exponential

1
growth or decay. Consider EO l£ 2 and
1
1 2
bg,n ¥ 7 4n &by 1 (¢
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1
L
2
1 L o2 s
2 _ . 2 y|2 Y — -k z/2
_O’lE (ieo) 4<Y - 1) Yl - e . (B56)
Ei - k2
L1y
2 1 1
k(1 - 7)

If the first and third components are compared with

U, (z)
in equation (18), then

the inviscid solution [Wl(z)

1

it is easily seen that EO lg 2 is a multiple of this

inviscid solution. Now consider

e

1
{Eo,z 7 Un gNlo,lj

1
_ . 2 z/2 _Zz
(160) e {20,2 2 20,1}

1

' (160)262/2(% o (8—15) o —)p—o 1

A=

(B57)

where
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B Yy (4 -y i
vy - 1 4
Ay - 1
by, = ) . (B58)
Y YV\[(? - 9
y - 1 \k Y
vty (1) - )
Y -
_ [a
The first and third components of b do not compare

—-0,2
u,(z)
with the expression for W (z) in relation (18). How-
2

ever, the two-dimensional vector which is constructed

from the first and third components of
1

(ieo)2e?/2(b -

YA
-0,2 2 b

0 1} is a solution of the differen-

tial equation (12). Hence

1
{20’2 + % (&n 5)20,1 E—E compares with a multiple of an
inviscid solution.

Thus, in all cases the lead terms in the formal
expansions with algebraic growth correspond to multiples
of the solutions to the inviscid differential equation

(12), that is, the lead terms are merely inviscid solu-

tions.
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In order to distinguish the asymptotic expansions
for the boundary and transition layer solutions, it 1is
necessary to determine additional terms in the asymptotic

expansions. The relations (B22), (B23), (B49), and (B51)

yield
2
0]
= (3r1 'f’i?’) “—\{2'+ 1
T,r, + Tyxg = ¢ 5 = |° o (B59%a)
0
2
%(1 +L<k2 _ 9_))
and
Tesy * Tysg = S04 ° S1,3 o (B59b)

where ﬁiB is the (4,3) element of 51 defined in rela-

tion (B14). The same result (B59) is obtained for the

case Al = Az =

LEMMA Bl: The vectors Eo,l’ 90,2, 30,3, and 91,3

o)

defined in relations (51) are linearly independent if

Ayt # integer and oz/y - k% £ 0
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PROOF :

det [by 15 by 55 S4,30 &3]

2
15 o . (B60)

/Y 2 g
- ) oy Az)(k2 ] %‘)

k
If 90,1, 90,2’ o, 37 and ¢, 3 are linearly dependent,
then (B60) implies
2
K- = o (B61a)
Y
or A=A (B61b)
or a = 0 = X = 1 A = 0 . (B61c)

The hypothesis of lemma Bl excludes relations (B61).

Hence, ho,l’ 20’2, 5,30 and 51,3 are linearly inde-

pendent. Q.E.D.
For computational purposes it is important to
avoid near-linear dependence or ill-conditioning of the

vectors Eo,l’ 20’2, 30,3, and 51’3 . Although lemma Bl

implies that the vectors b b and

20,1’ 20,2’ 0,3 are

€1,3
linearly independent for all k , it was found that for
k > 5, near-linear dependence destroyed the calcula-

tions. The error check, step 5 in the algorithm developed

in section 4.1, implied that no significant figures were
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obtained for these calculations (k > 5). To avoid this
difficulty the range of k values was restricted
(k < 1.5). Similarly, for Al = Az = % and the Lamb
wave (OZ/Y - k2 = 0), good accuracy was obtailned for
k < 1.5 , that is, the problem of ill-conditioning was
avoided.

Relations (B52) and (B59) imply

1 3
C — 20¢/=
2343)g4e VC. (B62)

BLSOL (&) = (50,3 +

3
£1,3 'zlfmﬁ
and TLSOL(E) =~ [-¢y 5 * ;—L—)g e VY (B63)
A =0, VE
for large & and arg & = —%-. Notice that the form of
the vectors ST and €, 3 implies that the modulus of

the third component of the boundary layer solution is

much smaller than the modulus of the first component. In

fact, as & » « along the ray arg & = —% .
third component of BLSOL (&) 1
"first component of BLSOL(Y) - O(;g) (B64)

"1l the ratio (B64) was approximately 10°° at

For € =10
z = 0 . Thus, in most cases the boundary layer solution

which arises in equation (33) affects only the
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horizontal component of the velocity.27

The boundary
layer solution reduces U(z) to zero in the boundary layer
and has a small effect on W(z). If the boundary layer is
ignored, then the constant d2 in equation (33) can be
accurately determined so that the kinematic boundary con-
dition W(0) = 1 1is satisfied, that is, 1t is only

necessary to satisfy
Yyp(&y) = dz(wz(gl) ) e3ml(£1)) : (B6S)

Equation (B65) will determine d2 to about five signifi-

-11 Of course only the kine-

cant figures for e = 10
matic boundary condition W(0) =1 will be satisfied by
(B65) .

Thus, the boundary layer solution has negligible
effect on W(z) for all =z , dincluding z = 0 . In
addition, it was shown in Section 3.2 that the boundary
layer solution has negligible effect on U(z) outside a
thin boundary layer near =z = 0

In Section B.1 two distinct methods were developed
for computing formal solutions which have lead terms cor-
responding to multiples of the inviscid solutions. For

computational purposes it is necessary to consider addi-

tional terms in the formal expansions. Quite naturally

2TThe only exception is the Lamb wave.
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the question arises as to whether or not the remaining
terms in the two distinct developments (method I and
method II) are related in any way.

So far it has been shown that
b. ., = c, x a_ (B66)

where the vectors b_ . and a , are defined in (BS51)

f r

and (B42), respectively.

THEOREM Bl: If relation (B66) is satisfied and

ZCAl - Xz) # integer and az/y % # 0 , then
—2n,1 - Ci x in,i (B67a)
and 22n+l,i = 0 , (B67b)

for 1 =10or 2 and n = 0,1,2,+°+

NOTE: If theorem Bl can be established, then
there is very little difference in using §i'L(E) defined
in (B42) or ii,zL(g) defined in (B51) for computational
purposes.

PROOF: Let Xi(g) be a solution of the differen-
tial equation (25) such that Xi(g) 1s asymptotic to

ii L&) as & » o along the ray arg & = —%», that 1is,

~ _Lrl -Rel ,
|y, (&) -y L@ = O<E 2 )I«SI o (B68)
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for i=1or 2 and all L = 0,1,2,++« . For a proof of
the existence of an actual solution Xi(g) of the differen-
tial equation (25) which is asymptotic to ii,m(i), see

[8, Chapter 5]. Similarly, let gi(g) be a solution of

the differential equation (25) such that Xi(g) is asymp-

totic to ii o-(E), that is,

~ "RG)\
= -(k+1) i
v, @ -7, @11 = ol ™) 1e ", @)
for i =1or 2 and all k =0,1,2,3,-°"
Consider Ei(i) defined by
w. (8) = Y, (&) - c.y, (&) . (B70)

Since (25) is a linear homogenous differential equation,
Ei(g) is a solution of (25). The hypothesis and rela-

tions (B68), (B69), and (B70) imply

g )11 = ole7) 12
If
by, # 0 (B71)
then
Wy (&) (El 1 7% tlbyy e gy ) % v )g—Xl
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If 2(x, - xz) # integer, then (B71) and (B72) imply

1
El(g), Xl(g), Xz(g), X3(£), and X4(E) are linearly
independent (13(5) and y, (8) are defined in relation
(BSO)), since each of these solutions of the differential
equation (25) has a different asymptotic growth. How-
ever, this is impossible since a system of four first-
order, linear differential equations has only four
linearly independent solutions. Relation (B72) is a con-
sequence of relation (B71); thus (B71) must be invalid or
by =8

All the coefficients in the asymptotic development

(B72) must be zero; otherwise w (£), y, (&), y,(E), y, (&),

and 24(6) are linearly independent. Similarly,

w. (§) ~ b 1, (b - c, X ) 1, ... -Xz
A 21,2 55,2 2 C&y,0) F 2

(B73)

If any of the coefficients in the asymptotic develop-
ment (B73) are nonzero, then E2(€): Xl(g), Xz(g),
X3(£), and X4(£) are linearly independent. Since this 1is

impossible it follows that

|©

(b - ¢c. X a ) = ees =

El,l -2,1 1 —1,1

|
2
[wo!
jw»)

(b - C X a ) = 00 =

and b, , 22,2 2 7 1,2
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Thus, for computational purposes there is little
difference in using either the formal expansions (B17)
and transformations (B49) to obtain approximate values of
the solutions of (25) with inviscid growth or the expan-
sions (B42).

Since the asymptotic solutions are used for com-
putational purposes, it is necessary to obtain some error

estimates. Consider
5 _ ~L-1 .
Hzg () -2, (@11 = o™ Nz, (]l . G789

as T » « ,, where Zi L(T) is defined in (B17) and gi(r)
r
is a solution of (B15). If € > 0 1is prescribed, then

there corresponds a constant M(e) such that

e, - e ] -2xy n
e IR CNERS SRS
Ip, 11 +e ] -2a
< TITL+1 T 1{ . (B75a)
l|9L+1l! - € —2A2 ~
s ' ‘ < Hzy(o -z, (o]
+ -2A
< Hag 0l * < T 2‘ . (B75b)

IT‘L+1
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201
I I Ry .
| ¢ B+ 7] < 2500 - 2y O]
1 Rel9T
!TIL+1
B75
and ( c)
gy l] L -met
S - € oy ) ~
2r+1 2 VY
BE: T % <z, (0 -z, (O]
1 -pel0T
. ||§L+ll| € 1T|5§ /Y
- I lL+l ’
(B75d)
for |t] > M(e) and arg t = —% . It is difficult to
determine M(e). However, an indication, not a bound, of

the error can be found by setting e = 0 in (B75). For
a specific value of 1 it would be reasonable to trun-
cate the expansions (B17) at a value of k such that

r(t,k), defined by

e b el Tl T, 1

E N Y R PR ik

r(t,k) = max

b )

(B76)

is a minimum; that is, the expansions (B17) should be

truncated at L = N , where
r(t,N) < r(7,k) for all k =0,1,2,¢- (B77)

and 1 1s held fixed. Of course N will vary with the

value of 1 ©prescribed.
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Notice that r(t,N) provides an estimate of the
error. For a specific value of 1t there will correspond
a certain degree of accuracy. However, it is reasonable
to require a certain accuracy from the expansions (B17)
rather than accept any accuracy that is possible at a
prescribed value of <t . For example, if it is desired
to satisfy

r(t,N) < 1077 (B78) 28

then 1t and N must be determined. Due to many calcula-
tions it was empirically established that (B78) is satis-

fied if
11
1] =~ (?7) (B79a)
and N = 20 . (B79b)

It is possible to verify (B79) by examining the

recursion relation (B45) or

Yg + 0(n) 0(n)
7 o= |9 T (B80)
n+l,1 ‘ n,i
0(n) 0(n)

28Most of the calculations summarized in Section 5
were performed on an IBM 7094 in single precision (about
eight significant figures) and relation (B78) was
satisfied.
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A crude estimate can be obtained for N and |1| by
Dy 2 -
examining X———L%-r'—]l—-|£| ", Recall that N = 20 for
52
expansions (B17) is equivalent to summing 10 terms of the

formal expansion (B42). It is easily verified that

(1.4)*°%(101)2 ~10
70 * ]
(o}

< 107°

(B81)

if g = (11)2 . (B82)

More generally, if it is required that r(t,N) satisfy

r(t,N) < 10°% (B83)

then
It] = %- (A 1s some positive constant) (B84a)
and N varies only slightly. (B84b)

Since the function r(t,L) does not vary signifi-
cantly for L mnear the value N defined in (B77), it is
not critical to truncate the expansions (B17) at precisely
the minimum term. Hence, it is possible to fix the value
of N with very little change in the determination of
the initial vectors for the canonical numerical integra-

tion procedure.




In Section 3.2, equation (32) was developed.
Suppose the same notation is used for the solutions of
the differential equation (25), namely le(g), ng(g),
;gyl(g), £§y2(g), and TLSOL(&), and suppose the scalars

€1, ©,, €., and e are defined in (32). It is of

4

interest to investigate the solutions of (32) as € = 0

Thus, it is natural to investigate the dependence of e

e and e on the parameter ¢ for fixed values of

27 ©37 4
o and k

THEOREM B2: If the solutions of the differential
equation (25), which are asymﬁtotic to multiples of the

inviscid solutions, are required to satisfy

i
IV (E) ~ e T(1)Z, (1) (B85a)
| ZIm () .
and INV_(E) ~ e T(1)Z, (1) (B85b)

where Ay and A, are the roots of the dispersion rela-
tion (13), T(t) is defined in (B49), and zi’m(x) is
defined in (B17), then the scalars €,5 €, and e, are
invariant as e > 0 if le(g), 992(£), lﬁyl(i), and
TLSOL(¢) are linearly independent.

PROOF: The vectors le(g) and an(g) are uniquely

defined. The vectors which satisfy (B85a) form a one-

parameter family of solutions such that any two members




of the family differ by a multiple of the transition
layer solution. Similarly, the vectors which satisfy
(B85b) form a one-parameter family of solutions. Thus,

consider
e,DC, (E) + e,DC, (E) + e INV, (E) + e,TLSOL(E) = INV,(§)
and

£,DC (£) + £,DC_(E) + £,{INV (£) + A TLSOL(g)} + f, TLSOL (&)

= INV_(g) + B TLSOL(£) . (B86)

The theorem is established if for arbitrary scalars A

and B , fi =e; for i =1,2, and 3 . However, equa-

tion (B86) can be rewritten as
£,0C, (§) + £,DC,(8) + £ INV, (£)
+ {f, + £,A - BITLSOL(E) = INV_ (&)

If DC, (8), DC, (&), INV, (&), and TLSOL(£) are linearly

independent, then £, = e f. = e, f = and

1 2 3 37

£, + £,A - B=e, . Q.E.D.

In general, if conditions (B85) are satisfied,

then the scalar e, can vary. In addition, if INVl(g)
and INV2(€) are reduced to canonical form at §& = % R

then the scalar e, is also uniquely determined.
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THEOREM B3:

If

le(g) or QQQ(E) is asymptotic to a nonzero

(B87a)
multiple of the boundary layer solution
whenever Clggl(€)+C29§Q(g) is not asymptotic
to a nonzero multiple of the boundary layer
solution, then
(B87b)

¢,DC, (E)+c,DC, () ~ £,F, (B)+,¥, (8] ,

where fl and f2 are nonzero if

e |+ le,l > 0,

1

then the viscous problem has one and only one solution

corresponding to every sufficiently small e > 0 for
the following cases
2
1 o 2
a. >\l>7>}\2,7‘k # 0
- =1
b. A=A, =3
29 02 2
cC. )\2<>\1,T‘k=0,Y=1.4,
29

For case c, hypotheses (B87a) and (B87b) are modi-

fied slightly.
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where Ay and A, are the roots of the dispersion rela-
tion (13) and Y: o(£) is defined in (BS0).

PROOF: Due to hypothesis (B87a), either le(g) or
Q92(£) is asymptotic to a multiple of the boundary layer
solution and, hence, simply by interchanging subscripts
it is always possible to assume le(g) is asymptotic to a
multiple of the boundary layer solution. Thus, without

loss in generality assume le(g) is asymptotic to a mul-

tiple of the boundary layer solution, that 1is,
DC,(8) ~ ay, .(5) , (B88)

where a # 0 and 23 o (&) is defined in (B50).

Consider
fC,(£) = DC,(g) + bDC, (E)

For a unique value of b it is possible to eliminate the
boundary layer solution from QQQ(g). If Qgg(g) is not
asymptotic to a nonzero multiple of the boundary layer
solution, then b = 0 and if QEQ(E) is asymptotic to, say,
5X23,w(£), then b = —% . Thus, for the proper choice of

b, ﬁgz(i) is not asymptotic to a nonzero multiple of

the boundary layer solution and hypothesis (B87b) implies

BC (8) ~ c¥

_.l’OO

(g) + dy. (&) , (B89)

2,

where ¢ and d are nonzero.
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Now 1let Hél(g) and &EZ(E) be constructed from the

first and third components of le(a) and ﬁ@z(g), respec-
Clearly (see theorem 1 in Section 3.2), if it

—

can be shown that H?l(g) and 5E2(£) are linearly indepen-

g

tively.

dent for sufficiently large , then the theorem is

established.

> A

2
(B59),

1+o<

CASE 1: A

1
Relations (BS52

> ’

1
2
), (B88), and (B89) imply

1)
/—

Ic, (&)

and

&, )
o’/y -

k(xl -

-

Hence,

det [TC,(8), &, (8)] = eg

(B91)
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2
and by assumption A, < %, %7 - k% # 0, e # 0 and g # 0

Thus, relation (B91) implies that for sufficiently large
£, Héi(g) and E?Z(g) are linearly independent.
. _ _ 1
CASE 2: A, =X, = 5
Relations (B55), (B56), and (B89) imply

R 1+ o(1) | 1
dc,(8) = h (¢n £)E 7

Ty " o)
k(3 - 1)
Y

3 E
—— 20‘ e
+ o(1)E *(an £)e ‘E : (B92)

Hence, relation (B92) implies that Hél(g) and gié(a) are
linearly independent for sufficiently large 'g

CASE 3: o%/y -~ k® =0, vy =1.4

For this case the formal expansions were obtained
by method II. However, by investigating the eigenvectors
of the matrix A(§) defined in relation (B40), it is
expected that relation (B90) is still satisfied, that is,

le(g) satisfies (B90). Thus, hypothesis (B87a) is
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slightly modified and relation (B90) is assumed to hold.
In addition, hypothesis (B87b) must be modified; that is,

assume
¢,DC, (8) * ¢,DC, (&) ~ £y, (E) + f,y, (€) ,  (B93)

if C19§&(€)+C2292(E) is not asymptotic to a nonzero mul-
tiple of the boundary layer solution, where 21 (&) 1is

defined in relations (B42), (B43), (B45), and (B46).

Thus,
[ N AL ]
0+ O(' 1 ) g2
— AimAy
de,(g) = g
-\
1 1
mo* O( l+)\2 xl) 2
g€
and

det [TC,(8), dC,(8)]

1
[}
=
[\aat
1
>
-t
+
o
[\aa
1
NJ_}—'
>
\—N/

However, # 0 (relation (B90) assumed), m # 0 ,

and X, <

e
1
1 2

+ Kz for vy > %» (recall vy = 1.4); thus,

Egl(i) and giz(i) are linearly independent for suffi-

ciently large & . Q.E.D.
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THEOREM B4:

If

Xl and Xz are complex roots of the
(B94a)

dispersion relation (13),

le(g) or ng(g) is asymptotic to a nonzero
(B94b)
multiple of the boundary layer solution,

21 O(E) equals a multiple of the inviscid

solution with upward energy flux and 22 O(g)
' (B94c)
equals a multiple of the inviscid solution

with downward energy flux,
and

whenever clggl(g)+czggz(g) is not asymptotic
to a nonzero multiple of the boundary layer

solution, then

Tim(r))
¢,DCy (E) * ¢,DC,(8) ~aly, (B)e? 1

EIm(x2>

* KRXQ,m(g)ez ) (B94d)

where a # 0 if |c [ + [c,| >0, [k | <1 and

ii o(&) 1is defined in (B50), then for sufficiently small

e > 0 the viscous problem has one and only one solution,




-222-

PROOF: Without loss in generality, assume le(g)
is asymptotic to a nonzero multiple of the boundary layer

solution; that is,
DC (£) ~ cy, (&) (B9S)

where 23 o(&) is defined in (B50) and c # 0

For a unique value of b , the vector §§2(E)

defined by
DC,(E) = DC,(&) + bDC, (&) (B96)
satisfies
T v
o~ 2 1 2 2
DC, (&) ~ a xl,w(E)e tKRY, o(B)e )

where a # 0 and |k_| < 1 (due to hypothesis (B94d)).

2|
Let Hél(g) and 5E2(£) consist of the first and third com-
ponents of le(g) and ﬁéz(i), respectively. Relations

(B52), (B59), (B95), and (B96) imply

!

.l_+0(_1.
o2 /—> —% 20J%

|
(@}
[aat
(¢}

e (&)
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and

NOTE:

£ 0 (B97)

and

s

-A Im(A.)
2 2
= lg 2

I}

v
—>\l EIm(Xl)
(S

gl * . (B98)
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Thus,

N = 3
gt (@ (), &, @11 > Jellal — S

11 Ayl - Tkl -

-3 20Re f;_ -3 2 é
x |g| * J: o) ]| ‘e 64:

(S

(B99)

For IKR[ <1, relations (B97), (B98), and (B99) imply

that H?i(g) and 5?;(5) are linearly independent for suffi-

ciently large & . Hence, the viscous problem has a
unique solution for sufficiently small € > 0 . Q.E.D.

It has been tacitly assumed that k > 0 . However,
the limiting case k = 0 1is of value. If ¢ 1is bounded

away from zero as k - 0 , then relation (B53) implies
that the inviscid solutions tend towards solutions with
only vertical motion. Thus, as k > 0 the wave motion
approaches the more restrictive case of vertical oscil-
lations of an isothermal atmosphere. The limiting case

k = 0 has already been solved by Yanowitch [3].
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